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LIST OF NOTATION

The following notation will be generally followed in this thesis. Any
exceptions will be noted at the place of occurrence.

Symbol Explanation

Prij

fO)

a pixel at the location of the i row and [ column of the scene

image, where i=1, 2, ..., n, and j=1, 2, ..., ny

a functional which maps pixels' spectral attributes into a d-
dimensional real space, f: {pixel spectral responses}—»Rd

, T
a d-tuple vector called pixel-feature, Xk=f(p[i'ﬂ)=[x1k, Xopr oo s xdk]
the observation space called pixel-feature-set, P={X1, X2 Ve an}
the number of pixels in the scene

the volume of the pixel-feature-set, vp=d.np

a path-segment represents an object in the observation space,
P={X,, X, , ..., X }, where P=P UP,U ... UP |

the number of pixels within the object Pi

the spatial-feature-map of object Pi in the scene, Li={ K; Xke Pi}
where LinL‘:Q) for all izj

the local spectral feature vector within the object Pi
the local contextual feature vector within the object Pi

a similarity measure, representing the distance between two
features



a normalized similarity measure, representing the distance

between spectral feature normalized by their spectral gradient with
respect to their spatial displacement.

a functional denoting the unity relation, for object extraction, which
is defined in the observation space by an adjacency relationship
together with the similarity criterion.

a functional denoting the feature extraction process, ¥ :P - F
an object-feature, Y=Y(P); e.g. Y=[ S,V , L]

the object-feature-set or the feature space, F={Y . Y2, Yno}
the spatial-feature-map of the whole scene, L=L 1UL2U ULno

an index set of pixels which have an adjacency relationship with
the pixet X, where A e L

the number of objects in the scene
the volume of the object-feature-set, vi=m.n_

the data compaction coefficient: c=vp/ Vi



ABSTRACT

Ghassemian Yazdi, M. Hassan. Ph.D., Purdue University, August 1988. On-
Line Object Feature Extraction for Multispectral Scene Representation. Major
Professor: David A. Landgrebe.

This thesis investigates a new on-line unsupervised object-feature extraction
method that reduces the complexity and costs associated with the analysis of
the multispectral image data and the data transmission, storage, archival and
distribution as well. Typically in remote sensing a scene is represented by
the spatially disjoint pixel-oriented features. It would appear possible to
reduce data redundancy by an on-line unsupervised object-feature
extraction process, where combined spatial-spectral object's features, rather
than the original pixel-features, are used for multispectral scene
representation.

The ambiguity in the object detection process can be reduced if the spatial
dependencies, which exist among the adjacent pixels, are intelligently
incorporated into the decision making process. We define the unity relation
that must exist among the pixels of an object. The unity relation can be
constructed with regard to the: adjacency relation, spectral-feature and
spatial-feature characteristics in an object; e.g. AMICA (Automatic
Multispectral Image Compaction Algorithm) uses the within object pixel-
feature gradient vector as a valuable contextual information to construct the
object's features, which preserve the class separability information within the
data. For on-line object extraction, we introduce the path-hypothesis, and the
basic mathematical tools for its realization are introduced in terms of a
specific similarity measure and adjacency relation.



Xi

AMICA is an example of on-line preprocessing algorithm that uses
unsupervised object feature extraction to represent the information in the
multispectral image data more efficiently. As the data are read into the
system sequentially, the algorithm partitions the observation space into an
exhaustive set of disjoint objects simultaneously with the data acquisition
process, where, pixels belonging to an object form a path-segment in the
spectral space. Each path-segment is characterized by an object-feature set.
Then, the set of object-features, rather than the original pixel-features, is
used for data analysis and data classification.

AMICA is applied to several sets of real image data, and the performance
and reliability of features is evaluated. Example results show an average
compaction coefficient of more than 20/1 (this factor is data dependent). The
classification performance is improved slightly by using object-features rather
than the original data, and the CPU time required for classification is reduced
by a factor of more than 20 as well. The feature extraction process may be
implemented in real time, thus the object-feature extraction CPU time is
neglectable; however, in the simulated satellite environment the CPU time for
this process is less than 15% of CPU time for original data classification.

The work described in this report was supported in part by NASA
Grant NAGW-925.



CHAPTER 1
INTRODUCTION

1.1 Background

The demand for a powerful system in the study of the Earth's resources
(vegetation, water, minerals, etc.), monitoring of the environment, and land
mapping calls for observation methods that will provide increasingly detailed
information about relevant parameters with adequate resolution in time and
space. In view of Jthese needs remote sensing by imagery has rapidly gained
interest in the last decade [1]. In remotely sensed data acquisition systems,
observations of a scene are represented by a large set of multispectral image
data taken by a variety of sensors [2,3]. The reflectance spectrum can be

used to identify a large range of ground cover materials [4].

In the past, data were typically acquired in four to seven spectral bands.
Recent significant developments in sensor technology make possible Earth
observational remote sensing systems with unprecedented spectral
resolution and data dimensionality. The value of these new sensor systems
lies in their ability to acquire a nearly complete optical spectrum for each
pixel in the scene. Such imaging spectrometry now makes possible the
acquisition of data in hundreds of spectral bands simultaneously. For
example, the High Resolution Imaging Spectrometer (HIRIS) now being

developed by NASA for launch in the mid-1990's, is to have 30 meter ground



resolution, 1000 pixels per scan line, and 192 spectral bands [5]. As aresult,
the complexity and costs associated with the analysis of the multispectral
image data and data transmission, storage, archival, and distribution are
likely to increase enormously. Therefore, the search for efficient methods for
scene representation to reduce the amount of data but which do not sacrifice
information content increases in importance. The current work is directed at

the reduction of such data redundancy in the scene representation.

On-line data redundancy reduction is especially important in data systems
involving high resolution remotely sensed image data which require related
powerful communication, archiving, distribution and data analysis
subsystems. High resolution imaging data systems [6], e.g., AlS, AVIRIS, and
HIRIS, are example systems where the application of on-line feature
extraction will be important. AMICA* is an "on-line preprocessing algorithm
that uses unsupervised object-feature extraction" to represent the
information in the multispectral image data more efficiently, to achieve data
redundancy reduction. AMICA incorporates spectral and contextual
information into the object-feature extraction scheme. The algorithm uses
local spectral-spatial features to describe the characteristics of objects in the
scene. Examples of such features are size, shape, location, and spectral
features of the objects. The local spatial features (e.g., size, shape, location
and orientation of the object in the scene) of the objects are represented by a
so-called spatial-feature-map. The spectral features of an object are

represented by a d-dimensional vector.

# For simplicity from now on the "on-line unsupervised object-feature extraction aigorithm"” will
be referred as AMICA (Automatic Multispectral Image Compaction Algorithm)



1.2 Objective of the Investigation

The objective of this research is to develop a joint unsupervised object
extraction and feature representation technique for removal of redundant
data in high resolution multispectral image data for remotely sensed scene
representation. On-line removal of redundant data is important in reducing
costs and time delays in links between the sensor and the information user,
or alternately on-line removal of redundancy can be used to obtain higher
performance in the data analysis. For implementing this concept, the AMICA
is investigated with emphasis given to practical data system considerations.
The technique is intended as an on-line unsupervised object-feature
extraction technique for scene representation, to achieve data redundancy
reduction. In the rest of the thesis this technique, the joint unsupervised
object extraction and feature representation, will be referred to as "object-

feature extraction" or alternately "image compaction.”

This technique is based on the fundamental assumption that the scene is
segmented into objects such that all samples (pixels) from an object are
members of the same class; hence, the scene's objects can each be
represented by a single suitably chosen feature set. Typically the size and
shape of objects in the scene vary randomly, and the sampling rate and
therefore the pixel size are fixed. It is reasonable to assume that the sample
data (pixels) from a simple object have a common characteristic. A complex
scene consists of simple objects. Any scene can thus be described by
classifying the objects in terms of their features and by recording the relative

position and orientation of the objects in the scene.



The proposed image compaction can be thought of as a combined object
extraction and feature representation process, where, object extraction is a
process of scene segmentation that extracts similar groups of contiguous
pixels in a scene as objects according to some numerical measure of
similarity. Intuitively, objects have two basic characteristics: they exhibit an
internal regularity, and they contrast with their surroundings. Because of the
irregularities due to the noise, the objects do not exhibit these characteristics
in an obvious sense. The ambiguity in the object detection process can be
reduced if the spatial dependencies, which exist among the adjacent pixels,

are intelligently incorporated into the decision making process.

In this work a new method for detection of objects is developed for on-line
object-feature extraction. This method utilizes a new technique based on a
so-called unity relation which must exist among the pixels within an object.
This unity relation among the pixels of an object is defined with regard to an

adjacency relation, spectral features, and spatial features in an object.

The technique must detect objects in real-time and represent them by means
of an object-feature. The unity relation, for on-line object-feature extraction,
can be realized by the path-hypothesis. The path-hypothesis is based on the
fundamental assumption that pixels from an object are sequentially
connected to each other by a well-defined relationship in the observation
space, where the spectral variation between two consecutive points in the
path follows a special rule; i.e. each pixel in an object has a certain unity
relationship with the corresponding path in the observation space. The path-

hypothesis is explained and illustrated in the next chapter.



By employing the path-hypothesis and using an appropriate metric for
similarity measure, the scene can be segmented into objects. Viewing the
scene segmentation from this perspective, a new on-line object detection
process (for scene representation) is developed for unsupervised object-

feature extraction in remotely sensed ground cover data.

The feature extraction process is based on the fundamental assumption that
reasonably well defined objects in the scene can be represented by a
suitably chosen feature set, which is extracted from the multispectral image
data. An object is described by a feature-set (so-called object-feature) of
parametric primitives which will be explained in chapter two. The
performance of a feature extraction process is measured in terms of the
information-bearing quality of the features versus the data set size. Since the
noise measurement on one pixel does not influence the measurement noise
for another pixel, the effect of noise is decreased substantially by averaging
the spectral response of the pixels within an object. The reliability of selected

object-features is investigated in chapter four.

In summary, the proposed on-line unsupervised object-feature extraction

process for an efficient scene representation consists of four major steps:

object detection: Pixels from an object are sequentially connected to each
other with an appropriate path. Any two points of this path satisty a
certain well defined unity relationship. This relation is defined by a
specific measure in the observation space. Based on this hypothesis a
functional for measuring the unity relation is defined. By using this

functional the unity relation between pixels is measured, and an



appropriate path-segment is selected; i.e. pixels in an object form a

path-segment in the observation space.

segmentation: The scene is partitioned into a finite, but unknown number
of objects by checking the unity relation among adjacent pixels, which

corresponds with growing the path-segment in the observation space.

feature extraction: Each object is represented by an object-feature set in
the “feature space." The information about attributes of a given object,
such as size and location, the object's spectral and contextual features

can be used for representation of an object in the feature space.

measuring feature relevancy: By using an efficient measure the choice
of feature relevancy in the feature space is checked. Features may then
be extended or merged in the feature space. In real time, this step

occurs simultaneously with the feature extraction process.

The object detection and feature extraction processes are unsupervised and
realizable. After the final step the scene is represented by the relevant
object-features in the "feature space,” which reduces the size of the image
data but preserves the useful information. Thus, the reduction of data

redundancy is achieved.

It is expected that this mapping, from the pixel-feature set into the object-
feature set, should generate a relevant feature set for scene representation.
The spatial feature of an object often has only a weak relationship to its class.
However, many classes can be distinguished reasonably well on the basis of

their spectral features, using statistical pattern classification techniques. One



might expect the classification accuracy to be higher if an unknown object is
classified using spectral-contextual features rather than when it is classified

using only the measurement made on the pixels without context.

Spectral information of surrounding pixels is correlated with the center pixel
under consideration. In object detection thé spectral features of adjacent
pixels are considered using substantially neighboring information; thus, the
object-feature consists of both spectral and contextual features. Therefore, it
is expected that the classification accuracy to be higher by using object-
feature rather than the individual pixel-feature. A basic premise of object
versus pixel scene representation is that since an object is usually large
compared to the size of a pixel, data analysis on the basis of the object-

features will be much faster and reliable.

1.3 Related Work

Basically, three different approaches have been available to reduce the
redundancy in the image data representation:

. image data compression methods

« feature extraction methods

. image segmentation techniques

Image data compression technigues usually aim at an optimal trade-off
between efficiency and implementation simplicity, according to the user's
needs. Data compression is the science and art of processing information to
obtain a simple representation with at most a tolerable loss of fidelity. Such

simplification may be necessitated by storage constraints, bandwidth



limitation, or communications channel capécity. Fidelity of the eventual
reproduction of the information based on the simplified or compressed
representation is measured by mathematical distortion measures [7] such as
error or purely subjective methods based on psychophysical tests (e.g.,

subjective image appearance).

Many methods and techniques are known for image data compression

[8,9,10]:

(a) Methods based on image processing in the spatial domain:
predictors, interpolators, deita modulation, differential pulse code

modulation, variable word-length encoding, etc.

(b) Methods based on a preliminary mapping of the image data in a
transformed domain and on a subsequent suitable selection of the
transformed data: transformed coding, e.g., based on the Discrete -

Fourier, Hadamard, Walsh, Haar, Karhunen-Loeve, etc. transforms.
(c) Hybrid methods employing a combination of methods (a) and (b).

Generally these methods are used for one-dimensional (in a spectral sense)
image data; e.g., television signals. But for high-dimensional (again, in a
spectral sense) images, especially when the process should be on-line and

unsupervised, those methods are not as practical.

The second approach to image data redundancy reduction uses spectral
feature extraction methods. In data analysis the problem of choosing the
relevant features for a set of multispectral image data is referred to as feature

selection. Feature selection is the science or art of processing data to obtain



a simple representation with information per unit data volume maximized. In
statistical pattern recognition, data analysis and signal processing feature
selection reduce the information redundancy, allowing a simpler description
of the system under’ consideration. In multispectral image data, feature
selection also reduces the total computational time whenever the analysis
involves a combinatorial handling of features, as in computer data
classification. In most of the cases, feature extraction improves the data

classification performance [11,1 2].

In the literature on this subject, there are many examples where the feature
selection problem is handled by using linear statistical methods, such as
variance and principal component analysis [13,14]. Some efforts have also
been made to select features in the case of non-linear models [15]. The
transformation can be parametric or nonparametric [16] but should reduce
dimensionality and at the same time preserve the information necessary for

identification of the spectral response.

One of the traditional feature extraction techniques is the Karhunen-Loeve, or
principal component, transformation [17]. However, construction of this
transformation requires estimation of the covariance matrix, and this process
would take on the order of 1013 arithmetic operations for a typical scene 10
by 10 km such as will be acquired by AVIRIS. On the other hand,
unfavorable conditions arise whenever the sample of points is so small, or
the number of features is so large, that the "low of large numbers” is not
applicable and the Gaussian distribution assumption is a weak hypothesis
[18,19]. Or especially when the data processing is on-line and the analysis

for feature extraction is in real time, in this case it should be very fast and
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unsupervised. Thus, the above approaches are not as practical. Clearly,
more computationally efficient transformations are needed for the analysis of

multispectral image data.

An extensive bibliography of published papers and reports dealing with
scene segmentation and models is presented in [20-31]. Image
segmentation and clustering are both methods of grouping data. The
difference between image segmentation and clustering is that in clustering,
the grouping is done in the measurement space; in image segmentation, the
grouping is done on the spatial domain of the image. Generally, two basic
approaches to scene segmentation have appeared in the literature: the
“edge detection" approach, which attempts to exploit object contrast
[20,21,22], and the "region growing" approach, which uses intra-object
similarity [23,24,25]. The edge detection or boundary finding approach has
two steps. First, points along the boundaries of objects are found, then the
complete boundaries are derived from the boundary points. Among the
techniques used to detect boundary points are local gradient, template
matching, two-dimensional function fitting, clustering and gradients estimated

from a variable sized neighborhood.

The gradient approach, in general, is inherently noisy and produces borders
that are discontinuous while also producing spurious isolated points. An
algorithm developed by Wacker and Landgrebe [26] based on clustering
technique is more stable and less noisy. None of these techniques find
boundary points with little enough error to form complete object boundaries
or guarantee closed boundaries of the objects. Thus, to form a closed

boundary for each object, a heuristic procedure using a-priori information is
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used to fill in missing boundary points and eliminate irrelevant boundary
points. Several heuristic approaches to the problem of edge detection are

given which are effective only when the object shape is restricted.

Previously investigated region growing methods have followed two steps:
first the image is divided into elementary regions, then reg.ions are merged
according to a set of merging rules [25]. In [22] elementary regions are
regions of constant gray levels, and the merging rules are heuristics based
on what the final objects should look like. This method is difficult to use it
objects do not have constant gray levels, as is the case, for multispectral

image data.

Most studies have dealt with one-dimensional (in a spectral sense) image
data only, e.g. television signals, and rarely has attention been devoted to
the multispectral image data. The importance of multispectral image
segmentation, in relation to data classification, has been recognized by
Landgrebe [31]. It has been shown that more accurate and efficient
classification of LANDSAT data for Earth scenes can be achieved by
classifying a whole segment at a time rather than by pixel by pixel

classification.

Robertson et al [23] developed a partitioning algorithm to partition an image
into rectangular objects. Robertson used a recursive image segmentation
algorithm by approximating each object by one or more rectangular blocks of
image points, where an image has been divided into successively smaller
blocks until certain stopping criteria are met. The objects represented by

elementary regions are defined by a regular rectangular grid superimposed
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upon image. The merging rule is to merge statistically similar, adjacent
regions. This method works well only if elementary regions can be made
both small enough to allow good boundary approximation and large enough

to preserve the spatial characteristics of the objects of which they are a part.

Gupta and Wintz [24] developed an algorithm to find closed field boundaries
in a multispectral image by partitioning the images into blobs. Gupta used
hypothesis testing by first dividing the image into elementary regions, e.g.
2x2 arrays. The algorithm compares first and second order statistics of
adjacent subsets. Adjacent subsets having similar first and second order
statistics are merged into blobs. In this manner the entire picture is separated
into blobs such that the image elements within each blob have similar
characteristics. By varying either of two parameters the amount of
consideration given to grey level and texture can be adjusted. The algorithm
guarantees closed boundaries, where the boundaries are defined to be the
edges between blobs. The algorithms, RIMPAR [23], BLOB [24] and ECHO

[25]), guarantee closed boundaries.

Some of the earlier studies cited above suffered from open boundary
problems, some from the sensitivity to the noise, and mostly from the
limitation due to the necessary conditions requiring large amounts of CPU
time, iterative processing, and some from the dependency on manual
initiation or supervision for threshold assignment. In those approaches that
the extraction of an object is based on a per-defined elementary regions,
even they may guarantee closed boundaries, the extraction of an object with
a complex and irregular boundary is not accurate or it will be very time

consuming. Some object extraction process requires a priori information
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about the scene (e.g., statistical properties of the scene, distribution, shape
and size of object, or number objects in the scene) and require threshoid
assignment and supervised initiation when the number of training sample is
so small such that the "low of large numbers” is not applicable and Gaussian

assumption is a weak hypothesis for making a correct decision.

1.4 Thesis Organization

This thesis is organized into five chapters. Following an introduction to the
general concept of numerical scene observation model and methods for
scene description, chapter two introduces basic mathematical tools to realize
the unity relation for object extraction, where the path-hypothesis is
explained and the properties of the unity relation are investigated in several
theorems with their proofs. Based on the unity relation and the path-
hypothesis, the Automatic Multispectral Image Compaction Algorithm
(AMICA) is developed. The flow chart and the details about AMICA are
presented in chapter three. In the fourth chapter, the reliability of object-
features versus pixel-features is investigated and the results of the object-
feature extraction, applied to several sets of real data, are presented. Finally,
in the fifth chapter, the thesis is concluded with a discussion about the object-

feature performance versus the pixel-features.
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CHAPTER 2
SCENE MODEL AND FEATURE EXTRACTION

2.1 Introduction

The objective of this chapter is to introduce the basic components that make
up the structures of an analytical model for scene representation in an
efficient measure space. This process is carried out through a specific feature
extraction method which maps the original data (pixel observation) into an
efficient feature space, called the object-feature-space. The efficiency
criterion for this mapping is the amount of usetul information that can be

extrécted from these features, versus the data set size.

One of the fundamental tenets of modern science is that a phenomenon
cannot be claimed to be well understood until it can be characterized in
quantitative terms. Viewed in this perspective, much of what constitutes the
core of scientific knowledge may be regarded as a reservoir of concepts and
techniques which can be drawn upon 10 construct mathematical models of
various types of systems and thereby yield quantitative information
concerning their behavior. In essence a model is something whose structure,
and hence behavior, corresponds in some sense to that of a particular reality
of phenomena. In scene modeling, the structures we use will usually be
mathematical in notation and will have elements of physical attributes in their

nature.
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In this chapter we present a model for a scene containing objects. In this
model the variations which carry the desired information (object features) are
represented in the data, but those variations which do not (noise) are
minimized by averaging: each object can be characterized by the expected
value of spectral responses of pixels within the object together with the object
contextual features. It is assumed that two adjacent objects differ in a
measurable way relative to the spectral features S, or contextual features V.
Objects with small area, for which the number of the pixels within the object is
not sufficient for contextual feature extraction, will be represented only by the

spectral feature. However, in general an object can be described by a set of
three parametric primitives (Si , Vi , Li ), where Li is the spatial-feature-map.

Following a survey of the general concept of numerical scene representation
and methods for scene description, section four introduces the proposed
technique for unsupervised object-feature extraction. The basics of feature
selection and object-feature reliability are described in section five. In section
six object detection based on the unity relation among the pixels in the
observation-space is explained, and the basic mathematical properties of the
unity relation are determined. After an introduction to similarity measure in
section seven, for realization of the unity relation the path-hypothesis is
introduced; then objects in both observation-space and feature-space are
illustrated. Section seven concludes with construction of the functional for
unity relation test. The equations for feature extraction are derived and
presented in section eight. After a summary about the proposed feature
extraction procedure for scene representation in section nine, this chapter

concludes with a brief discussion of object-feature classification.
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2.2 Remotely Sensed Scene Observation

In remote sensing systems, properties of an unknown scene are determined
at a distant location, through noncontact measurement, based upon the
interaction of the electromagnetic radiation with the scene [4,32]. Remote
sensing has greatly extended man’s perception of the world's resources and
interaction of nature and man made influences. Remote sensing has grown
from simple photography and photo interpretation to satellite borne sensors
and sophisticated machine aided analysis. Important developments in
sensor technology, computer systems, pattern recognition theory, and image
processing techniques have brought the remote sensing state of art to the
point where it is a powerful tool for studying the Earth's resources remotely.
in the modern remotely sensed Earth Observation Systems there are two
main distinct activities: scene representation by numerical data or data
acquisition; and information extraction, by means of which the acquired

numerical data is converted into useful information.

The scene (in this work this is assumed it to be part of the Earth's surface) is
the target of the remote sensing system, which is under investigation and the
interest is to extract information about the scene's structure and content. The
desired information is assumed to be contained in the spectral, spatial, and
temporal variation of electromagnetic energy coming from the scene which is

gathered by the sensors.

Typically a complex scene is composed of relatively simple objects of
different sizes and shapes, each object of which contains only one class of

surface cover type. The scene is often described by classifying the objects
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and recording their relative positions and orientations in the scene in terms of

tabulated results and/or a thematic-map (class-map), Fig. 2.1,

Y.
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Bare-Soil

Fig. 2.1. A typical thematic-map (class-map)
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A critical portion of the data acquisition system is a multispectral sensor.
Multispectral sensor systems employ sensors to observe portions of the
electromagnetic spectrum typically ranging from the visible region to the
reflective infrared regions. Also the thermal portion of the spectrum and other
portions of the electromagnetic spectrum such as microwave region have

important uses in remote sensing.

In a remote sensing system, primary features of a scene are formed by
multispectral observations, which are accomplished by spatially and

spectrally sampling the scene.

A typical multispectral sensor samples several spectral dimensions and one
spatial dimension from the scene at a given instant of time. The second
spatial dimension is provided by the motion of the platform which carries the
scanner over the region of interest, generating a raster scan; alternately, the
raster can be provided by area array detector [6]. Thus, through the data
acquisition system, the scene may be viewed in an image form taken at each
of a number of electromagnetic wavelengths. This image can be thought of
as a multi-layer matrix whose elements are called pixels. The physical model
of a scene after spatially and spectrally sampling is illustrated in Fig. 2.2.

h

Let p; be representative of a pixel at the location of the i'" row and jth

column of the scanned image of the scene. As shown in Fig.2.2, the number
of pixels in each scan line is n. and the number of lines in each scene frame

is ny, which both are finite and assumed known.
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Fig. 2.2. Multispectral scene pixel-description
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The instantaneous field of view of the data acquisition system defines the
pixel size (spatial resolution) and is the projection of the detector back
through the optical system onto the scene. The spectral resolution of the data
acquisition system defined the spectral dimensionality d of the data. Figure

2 3 illustrates the spectral and spatial resolution of a pixel-feature.

Spectral Bands
(Spectral Resolution)

X
A y
r— — \
)
112 d
0.4 25 n L

Wavelength {4 m)
Single Pixel
(Spatial Resolution)

Fig.2.3. A typical pixel-feature

The output of the data acquisition system is multi-dimensional data,
represented numerically by an ordered set of d-dimensional vectors. We
represent the multispectral sensor response by a functional f(.), where this
functional maps the pixel's spectral attributes into a d-dimensional real

space.

f: {pixel spectral responses}—>Rd
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It is assumed that d different spectral observations of each single pixel are

obtained by the multispectral sensor. Each pixel is represented numerically,
then, by an d-dimensional set of measurements, denoted by vector Xk in the

observation space, where the vector components are a set of measurement

at each spectral interval; i.e. each value in this set, Xy . is a real number

proportional to the energy received from the pixel by the sensor in that

particular band of the electromagnetic spectrum.

The vector Xk is then referred to as the feature vector of p[i il i.e., each pixel

p[i j €an be identified by knowing its feature Xk. Mathematically this set is

represented by a d-tuple vector and is called a pixel-feature.
t
e L R L (P
The set of pixel-features, which represents the whole scene by a subset of
R space, is called the observation-space and represented by:

P={X1, X, ,an}
where n, is the number of spatial observation (pixels).

n =n.n
P oxy

The volume of P is defined for scene representation by the number of spatial

and spectral observations, and is equal to:

v =d.n
P p

Notice that there is a relation between the index of the pixel-feature "k" and

the pixel spatial coordinates in the scene [i.]]. The spatial location of each
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pixel in the scene can be determined uniquely by knowing its row number, i,
and its column number, j, where the index address of a pixel is represented
by a two-tuple [i,j]. An index operator is defined, such that by knowing the
pixel's index address, [i,j], the index of the corresponding pixel-feature in the
observation space, the scalar k, can be determined; i.e., it represents the
index mapping from the spatial domain into the spectral domain. The well
ordered sequence of indices, which represents the whole scene, is called the

spatial-feature-map, L; where L is a subset of natural numbers.
L={k; X =f(p )< P}

i=1,2,...,n_ and j=1,2,...,n
X y

The spatial-feature-map is needed to identify the spectral feature of a pixel,
by knowing its spatial coordinates in the scene, in the observation space.
The scene is represented numerically by the pixel-feature-set P together with
the corresponding spatial-feature-map L, of which all elements, for the

scene, are fixed and deterministic.

One of the distinctive characteristics of the spatial dependence in
multispectral data is that the spectral separation between two adjacent pixels
is less than two non-adjacent pixels, because the sampling interval tend to
be generally smaller than the size of an object; i.e., two pixels in spatial
proximity to one another are unconditionally correlated with the degree of

correlation decreasing as the distance between them increases [33].

The results of study on measurement of different order statistical spatial

dependency in image data, specifically the measurement of first, second and
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third order amplitude statistics along a image scan line show considerable
correlation between adjacent pixels [34]. Seyler [35] concluded, from the
measurement of the distribution of the difference between adjacent pixels,
that the probability that two adjacent pixels have the same gray level is about
106 times the probability that they differ by the maximum possible amplitude
difference. Kettig [33] by measuring the spatial correlation of multispectral
data, showed that the correlation between adjacent pixel is much less when
conditional upon being with an object, as compared to unconditional

correlation.

High correlation among adjacent pixels in the observation space represents
redundancy in scene data. When such redundancy occurs, reducing the size

of the observation space should be possible without loss of information.
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2.3 Object vs. Pixel Scene Description

As previously stated the scene is assumed to consist of relatively simple
objects of different sizes and shapes. The resolution of the spatial
representation depends on both pixel size and the interval between samples,
which are usually equal, Fig. 2.2. By under-sampling information is lost;

however, over-sampling will cause increased redundancy.

Typically the size and shape of objects in the scene vary randomly, Fig.2.1,
and the sampling rate, and therefore the pixel size, is fixed; it is inherent in
image data that data-dimensionality (the number of spatial-spectral
observations for scene representation) increases faster than its intrinsic-
dimensionality (the size of the smallest set which can represent the same
scene, numerically, with no loss of information). Because the spatial
sampling interval is usually comparable to the object size, it follows that each
object is represented by an array of similar pixels. Therefore, scene
segmentation into pixels is not an efficient approach for scene
representation; however, a scene can be segmented into objects, and since
the shape and size of objects match the scene variation, scene

representation by simple-objects is more efficient.

An object consists of contiguous pixels from a common class which have a
unity relationship with each other; i.e., their features are statistically similar,
and since the recognition of patterns is based on pattern-feature comparison
(although there is a fluctuation in the spectral response of pixels within an
object) these pixels have the same common characteristic and carry

equivalent "useful" information about the scene. The similarity among the
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pixels of an object occurs in part in the form of redundancy in the
measurement (observation) space. Redundancy in the object data implies
that a scene can be segmented into objects, instead of pixels, with no loss of
useful information. Thus the method of scene description by object extraction
will be directed at the reduction of data redundancy in the scene

representation, if the relevant object-feature is selected.

Object detection refers to finding the natural groups among the contiguous
pixels. In other words, the data is sorted into objects such that the "Unity
Relation" holds among members of the same object and not between
members of different adjacent objects. Essentially object detection might be
viewed as assigning appropriate meaning to the terms "natural unions" and
"natural association" where “natural” usually refers to homogeneous and
"well separated structures;” which makes object extraction similar to

clustering process [31].

Object extraction and clustering are similar in the sense that they both are
methods of grouping data; however, spatial considerations make clustering
and object extraction different. Because an object can be textured, the pixels
within an object might not form a compact cluster in the measurement
(observation) space. Also, because there can be several instances of a
particular class of entities in a single image, Fig. 2.1, nonadjacent objects
might be nearly identical in observation space. Another difference is that in
object extraction the existence of a partition that completely separates
objects is guaranteed. However, in clustering, if we allow underlying classes
with overlapping density functions, the classes can never be completely

separated in the observation space.
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Object extraction can be thought of as transforming the original image, which
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Fig. 2.4 Multispectral scene object-description
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An object-description is often better than a pixel-description, for two basic

reasons:

. First, more information about the scene entity is available from a
collection of pixels associated with the object than from an
individual pixel associated with the scene. This fact has been
exploited by "object” classification algorithms that make a
classification decision for each group of image points, for example
by sequential classification [11]. The potential advantages of object
classification are especially great when class probability densities
differ in shape but exhibit a high degree of overlap. Classifying
objects instead of pixels also allows the measurement and use of
spatial characteristics such as size, shape and texture, which have

been found to be useful in classification.

. Second, an object representation is often more compact than a pixel
description. This savings in storage space or transmission speed
occurs if objects contain enough points so that specifying the
locations and essential properties of the objects takes fewer bits

than specifying the collection of individual pixel properties.

In this thesis a method for detection of objects, based on a specific region
growing method, is developed for automatic scene representation by object-
features versus pixel-features. This method utilizes a new technique, based
on the unity relation and the path hypothesis, which detects objects and

represents them by means of an object-feature in the feature-space
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2.4 Object Model

In the analysis and processing of multispectral images one encounters a
large amount of data. To enable efficient processing of this data, it would be
preferable to have an underlying model that explains the dominant
characteristics of the given image data. Subsequent processing of the
images can be efficiently accomplished by using the models fitted to the data.
With the above scheme, a scene is segmented into spatially disjoint objects:
the image described by the objects' features and by recording the relative

position and orientation of the objects in the scene.

Let Li be the spatial-feature-map of an object Pi in the scene. In other words,
Pi is a set composed of contiguous pixels belonging to the same class, and

Li is the index-set of the pixels in the corresponding object.

P=(X. Xy X}

ni
L={k: X,eP,}

The number of objects in the scene, . is unknown, but, the scene's spatial-

feature-map consists of union of finite disjoint closed-sets, represented by
L's.
j

L-L ULU .. UL

LimLi=® for i#j

Objects in imaged scenes are describable by sets of relevant attributes or
features. These features represent distinct measurements or observable

properties. The object's initial measurements, which are encoded as pixel-
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features, are subsequently subjected to a object-feature transformation: the
relevant object-feature can be the spatial-feature-map of the scene and the
object spectral-contextual features, which are explained in the next section in

this chapter. Figure 2.5 illustrates an example of object-feature.
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Fig.2.5. A typical object-feature
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Each of the objects contains a union of similar pixels, and the union of the
simple objects represents the whole scene. All pixels of an object, whose
pixels satisfy the unity relation, can be represented by an object-feature set: a
complex scene consists of objects, any scene can thus be described by
classifying the objects in terms of their relevant object-features Y. The object-
feature extraction process is denoted by a nonlinear function ¥(.) which
maps the observation-space (pixel-feature-set) into a more efficient feature-
space (object-feature-set). The procedure for object feature extraction is
explained in the "Object-Feature Extraction” section of this chapter. Here we

represent the feature extraction only by notation.
vY:P-oF

The operator ‘P(.) is actually the feature extractor which maps the object's
pixel-features Pi into a point, called object-feature Yi, in the feature space. It
is expected that this mapping, from the pixel-feature space into the object-
feature space, should generate a relevant feature set for representation of

the objects' attributes.

Y=¥(P)

The set of object-features, F, which represents the whole scene, is called the
feature-space: the scene can be represented by the object-feature-set F.ltis
desirable that the amount of useful information conveyed by object-feature-

set, F, be equivalent to the amount of useful information conveyed by the
original data set, P, while at the same time v,, the volume of the feature set,

should be much smaller than Vo the volume of the original data set.
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V. <<V
f P

A system that maps a sequential source set P=P1UP2U UPno into an

object-feature set F=({Y ” Y2, Yno} defines the compaction system. The

allowed size of the reproduction set is much smaller than the total size of
source set and hence compaction is achieved; i.e., it takes fewer bytes to

specify the reproduction set than the original source set. The compaction
coefficient ¢ is defined as the ratio of the volume of pixel-feature-set, Vo

divided by the volume of the object-feature-set, vp
c=v/v
p f

The accuracy of this system (the information content in the object-feature-set)
is dependent on the parametric primitives which are used in object-feature
construction; however, this accuracy has an upper bound which is controlled
by the level of noise which exists in the acquired data. In the analysis of a set
of data points in multidimensional space, the need to choose the most
relevant features frequently arises. Feature selection techniques are used to
find properties of objects in the scene which can serve as the strongest clues
to their identification. This subject is investigated in the next section where

the appropriate feature will be selected for object representation.
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2.5 Feature Selection

Typically, objects are classified (grouped) by an experimental study of some
phenomenon. One basic property all objects possess is that they are
describable by some set of relevant attributes (features). These features
represent distinct measurements or observable properties. In the case of
physical objects attributes can include, for example, size, shape, texture,
average spectral response, etc. The initial encoding of the attributes is
dictated by the measurement devices in use or by an established convention.
Features may be measured on different scales: qualitative scales; e.g.,
nominal; or quantitative scales; e.g., ordinal, interval, ratio and absolute.
These initial measurements, which are encoded as numerical variables, may
be subsequently subjected to a problem-dependent transform. Qualitative
properties such as small, medium, large, etc. can be replaced by relative
numbers. In this thesis we restrict consideration to a case in which all the
attributes making up the object teature are quantitative. The choice of
relevant features is very task-dependent and may depend more on the
judgment of the system designer or operator than on any other system

components.

In theory, decisions about class membership for a noisy object should be
based upon as many observations of the object as possible, and preliminary
decisions concerning subsets of object-features can provide less than
maximally reliability recognition. Thus theoretically, the most reliable

decision should be based upon all the pixels in the object. Also in theory,
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every result achievable with d variables can also be achieved with d+1

variables, but the converse is not true.

Thus one might expect that by increasing the number of features the object
recognition error rate should decrease or at least stay the same, but in
practice quite often the performance of the features will improve up to a point,
then begin to deteriorate as further attributes are added. This is referred to as
the Hughes' phenomenon [36]. Kovalevsky [37] points out that though in
complicated cases of interdependent variables it is not easy to estimate the
error probability, it is always true that increasing the number of variables
used for taking statistical decisions may only improve the reliability, however

the decision procedure error may become worse.

Duda and Hart [12] comment that for the Bayesian decision procedure
beyond a certain point the inclusion of additional parameters leads to higher
probabilities of error, if the number of training samples is finite. Trunk [19]
shows that the probability of error of the Bayes detector approaches zero as
the dimensionality increases and all parameters are known, but the
probability of error approaches 0.50 (for the two class case) as the
dimensionality increases and the parameters are estimated. Thus, even
though theoretically as many parameters should be used as possible, a
specific decision procedure may become worse by using too many

parameters.

The existence of an optimal set of features is indicated for the representation
of the objects, relative to feature selection and the feature reliability problem.

An object can be described by a set of parametric primitives. Such primitives
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may be based on observation as well as knowledge about the object.
Typically in remote sensing the important primitives, for recognition of an
object, are spectral feature and/or contextual features. But since it is usually
presumed that the shape and size of natural objects in a scene (ground
cover types) are random and unrelated to the ground cover classes, these
features are often ignored in feature extraction and pattern recognition of the
ground cover types. However in this work, the objects' geographical features
are preserved in the spatial-feature-map and can be used by an appropriate

pattern recognition system, if it be necessary.

It is assumed that two adjacent objects differ in a measurable way relative to
the spectral or contextual features. In this system, a set of points representing

similar patterns are represented with the same features. Thus, the attributes
of Pi can be refined by observation which are given by a set of three

parametric primitives:

Y. =(S,V,, L)
where Si is the estimated within-object spectral feature representation, V. is
the estimated contextual feature, and Li is the spatial-feature-map or the
object geographical shape and location in the scene.
Letn, be the number of pixels in the object Pi ,and L. be the corresponding

spatial-feature-map, then the object spectral feature Si is estimated by

averaging the spectral response of pixels within the object P, (it seems

plausible to assume that a set of points representing similar patterns could

be represented with the same features)
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Si=?1fzxk

'ke L,
The intra-object spatial variation (contextual feature) is object-class

dependent [31] and can be used for object recognition. In this work the object

contextual feature is represented by the within-object spectral variation
vector, Vi. The spectral variation vector is defined by the gradient of the pixel-

feature with respect to the spatial displacement in the spatial direction §. Let
u, be the unit-vector in the direction of i axisin a Rd space, the gradient of a

pixel-feature, Xe P, is introduced by the following equation:

Then the contextual feature, Vi, is estimated by averaging the spectral

variation of pixels within the object P.

ﬁﬁZVs X,

! ke Li

Notice that the spatial direction & can be horizontal, vertical, diagonal, and
any other possible spatial direction. This averaging reduces the effects of
noise on the responses of a difference operator, V. The objects with small
area, whose number of pixels within the object is not sufficient for contextual
feature estimation, will be represented only by the spectral feature. This is
done by adjusting the degree of uncertainty in the feature extraction process:

the uncertainty about the feature is inversely dependent on the number of
pixels that are contained within the object Pi .
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In summary, an object can be represented by a set of three parametric
primitives (Si, Vi , Li ). Although, the contextual feature is dependent on the
sensor resolution as well as the sensor altitude from the scene, the intra-
object spatial variation between adjacent pixels can be a significant factor for
on-line object extraction (see path-hypothesis in section 2.7). It is expected
that this mapping, from pixel-feature space into object-feature space should
generate a relevant feature set for scene representation. The performance of
an object-feature extraction process is measured in terms of the information-

bearing quality of the features versus the data set size.

By using the unsupervised object-feature extraction the scene is represented
in the feature space. Once each object-feature is classified, the membership
of pixels which belong to that object are determined simultaneously
regardless of their size and location in the scene. Classification accuracy is
an important quantitative measure of feature quality in the remote sensing

system. Feature quality can be measured in terms of:

. overall misplacement error
. the feature classification performance
. subjective objects appearance.

The first and second measures are quantitative criteria which have
convenient mathematical forms, where the first one measures the number of
pixels assigned to the incorrect neighboring object (based on object class

type) relative to the total number of pixels in the scene. The second one
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measures the number of pixels classified into the correct class relative to the

total number of pixels in that particular class.

The subjective objects' appearance is an appropriate criterion when some
objects in the scene become more important than others regardless of the
size of the objects, or when the ground-truth-map for the first two evaluations
is not available. In such cases it is often too difficult to define a mathematical
expression for adequately quantifying feature quality. The visual assessment
will be used for this kind of qualification. The feature evaluation is performed

and explained in detail in chapter four.
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2.6 Object Detection and Unity Relation

An object consists of the union of pixels which have a unity relation with each
other. The unity relation is the important tool for construction of objects. This
is explained in this section. Intuitively, objects have two basic characteristics:
they exhibit an internal consistency, and they contrast with their
surroundings. Because of the irregularities due to the noise, the objects may
not exhibit these characteristics in an absolute sense. The ambiguity in the
object detection process can be reduced if the spatial dependencies, which
exist among the adjacent pixels, are intelligently incorporated into the
decision making process. In this work unity relation among the pixels of an
object is constructed with regard to the adjacency relation, the spectral-

features and the spatial-feature characteristics in an object.

Image data is represented by a two-dimensional rectangular array of pixels.
One of the important characteristics of such data is the special nature of the
dependence of the feature at a lattice point to that of its neighbors. The
unconditional correlation between two pixels in spatial proximity to one
another is often high, and such correlation usually decreases as the distance
between pixels increases. One way of characterizing this dependency
among the neighboring pixels is to represent it by a unity relation which
exists among the pixels of an object, meaning that an object consists of
contiguous pixels from a common class where their features are
statistically similar.

The keys to the unity relation among the pixels of an object are the adjacency
relation and the similarity criterion. Pixels from an object carry common

characteristic information about the scene, and since all information
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extraction processes are based on the patterns' feature comparison,
mathematically it can then be said that the unity relation exists between two
pixels X, and X if and only if they satisfy two criteria simultaneously:
1) They have an adjacency relation with each other, in the sense

that they are spatially contiguous or their spatial distance is filled

by a sequence of contiguous pixels from the same class. The

subset of L (spatial-feature-map) whom their corresponding pixels
having an adjacency relation with the pixel Xk is represented by

the set Ak, called neighborhood set. The adjacency relation is

illustrated in chapter three.

2) They have the same attributes, or they carry equivalent useful
information about the scene, in the sense that their features are
similar to each other. This means that the distance between these

attributes, in an appropriate metric-space, is less than unity.
as(xr, X )<1
This metric (the similarity measure) is explained in detail in the next section;
in this section only the properties of a unity relation, regardless of the

selected metric, are investigated. Let R(.) be a relation on set P. When the

relation exists it is represented by R(.)=1, otherwise by R(.)=0.

The R(.) is a unity relation provided that R () satisties the following
properties for all Xk, Xr, Xh belonging to pixel-feature-set P:

i) Similarity and Adjacency Properties:

{0, X)<tand reA } & R(X,, X)=1
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ii) Reflexive Property: (X, X,)=1
iy  Symmetric Property:  R(X, X) = RX, X)

iv)  Transitive Property: The unity relation has a transitive
property, that is, if the unity relation exists between Xk and Xr,

SK(Xk, Xr)=1, and at the same time it exists between Xh and Xr,
%(Xh, Xr)=1, that is sufficient for existence of the unity relation

between Xk and X, EK(Xk, Xh)=1. Since the unity relation

exists among the pixels in an object, we say that the unity
relation exists between each pixel of an object and

the object itself.

Notice that the unity relation is defined by a property between two individual
pixels in an object, but it is extended to the property between a pixel and an
object (based on the transitive properties). The unity relation properties are

very important tools for object extraction.

Proposition: The unity relation is said to exist between the pixel Xk

and the object Pi if and only if for some Xr belonging to Pi the

relation ‘.K(Xr, X, )=11s true.

Proof of the sufficient condition: since X belongs to the object P, the

unity relation exists between Xr and all other pixels from Pi; ie.,
R(X, X, )=1forall X e P

but EK(Xr, Xk)=1, and from the unity relation transitive property, this

implies that
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R(X,, X,)=1 for all X eP,

which it is equivalent to saying that the unity relation exists between
the pixel Xk and the object Pi ; thus Xke Pi.

Proof of necessity condition: if the unity relation exists between Xk and

the object Pi , we should have
9T(Xk, X.)=1forall X eP.

But the set Pi is a finite closed set, and since Xre Pi, it is a

necessary condition to have

SK(xk, X )=1

We had pointed out that, the unity relation in the observation space is defined
by an adjacency relationship together with a similarity criterion among the
pixels' attributes. The similarity between the pixels' attributes is of basic
importance in attempting to test the existence of the unity relation. This is
evident since the existence of two adjacent objects is a consequence of the
dissimilarity of features from neighboring pixels where two adjacent objects
differ in at least one of the spectral or contextual features. But the accuracy of
the similarity measure is dependent on the selected metric space used for
functional construction and has an upper bound which is controlled by the
amount of noise in the system. The uncertainty in the similarity measure is
significantly reduced using the within object regularities (contextual feature).
This property is used in the path-hypothesis for unity relation construction. In
the next section the main concept of similarity measure based on path-

hypothesis is presented.
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2.7 Similarity Measure and Path Hypothesis

The principles for evaluation of the unity relation are:
a) the measure of similarity
b) membership in the same neighboring set, characterized by a

single concept (adjacency relation).

The traditional principle for comparing features utilizes some measure of

pattern similarity, which is the reciprocal of a distance measure.

To define a distance, we need a functional which maps all pairs of elements

from the set of features into the real line:

3:{X,Y}—»R
Such a functional is called a metric if it possesses the following properties:
Positive definite:
d(X,Y)>0

J(X,Y)=0 & X=Y

Symmetric:
A(X,Y)=0(Y,X)
Triangle inequality:
A(X,Z) < A(X.Y) + 9(Y.2)

These requirements are merely formalized statements reflecting the intuitive
properties of a distance. The set of features P together with functional d(.) is

called a metric space and is represented by a two-tuple (P, 9).
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An interesting class of metric spaces [38], which is called Minkowsky
Spaces or L” spaces, is obtain when a metric d(.) is defined in a R space

by the following formula
d
p
V) =[x -y)"]
k=1

Another well-known metric space is called Chebyshev Space, which is

1
P

defined in a Rd space by the following equation
d
o) =Sup {x, -y, I}
k=1

One can show that
dxv) = lim d x,v)

pP— 0O

This shows that the Chebyshev space is a special case in the Minkowsky
spaces <a°°). The metric 0 ; is called Diamond space, 82 is called Euclidean

space or sphere space, and 800 is called a square space (Fig.2.6).

Fig. 2.6 Equidistant surface d(0,X)=r in the Minkowsky spaces (d=3)



44

In view of various definitions of metric spaces the question arises as to which
metric space can best explain the similarity and differences. For example, let
X be an unknown pixel and Y, Y, Yy be spectral feature-vectors of three
different neighboring objects. Figure 2 7 illustrates these feature-vectors in a

d . ,
R space (d=32) where the vertical axis shows the value of each elements,
X, in the feature vector, and the horizontal axis shows the position of that

particular element in the feature vector.

t
x=[x17 X2) oy xn| LIRS | x32]

[
18 s 15 v
14 Y1 14 2 1- 3
Xn X, Xn
5]
0 10 n 20 30 © 1o n20 300 10 n 20 30

Fig. 2.7 Which of Y1, Y2, Y3 is more similarto X ?
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Let the decision rule for unity relation be the minimum distance criterion

between the spectral features (similarity measure). Then, table 2.1 gives
different answers for the existence of the unity relation among X and Y1 ,Y2 ,

Ya' where in the Diamond space Y1, in the Euclidean space Y2, and in the

Chebyshev space Y3 is selected to have a unity relation with X.

Table 2.1 Distance between features

" Distance in the Measure Space u
X from Diamond Euclidean Chebyshevw
9 (X.Y,) 2.56 0.54 0.18
9 (XY,) 2.62 0.52 0.13
d_(X.Y,) 3.16 0.56 0.10

There is not any analytical approach to find the optimum metric space for
similarity measure in the general sense for multispectral image processing;
however, the superiority of the Diamond metric over the other metric spaces
can be determined experimentally [39,41]; also, notice that the following

property always holds for any pair of features (X,Y) in a Rd space:

0.(XY) = d_(X,Y) < d,(x.Y) < d,(X.Y)

Thus in this work we restrict the consideration to the metrics that measure the

similarity distance in the Diamond space.
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In order to characterize the unity relation among the pixels, consider pixel Xk
and a neighbor, Xr. If they are sufficiently similar according to some suitable

measure, then Xk and Xr should be merged to a single simple object Pi;

otherwise they should be assigned to different objects. To implement this

scheme the definition of a suitable functional for measuring the distance is
necessary. Assume this functional exists and is defined by Bs(.), such that if

9 (X, X )<1

we say that Xk is similar to Xr _then the unity relation exists between them,
which means Xk and Xr carry common characteristic information about the

scene, and locally belong to the same object Pi.

One disadvantage of the above approach is that it is quite local. There is
always uncertainty in applying a similarity measure to two adjacent pixels
(uncertainty is explained in appendix A at the end of this thesis). It is logical
that employing more pixels as evidence would tend to reduce this uncertainty
in distance measurement. On the other hand, increasing the amount of
evidence increases the complexity of the unsupervised process and possibly

the error of the feature extraction procedures [19,36].

It would seem that the optimum approach for designing the functional 85(.) is
that it should be based on the totality of pixel features in that object, Pi. Since

Pi is not pre-determined and the features of P.| are unknown, a hypothesis we

shall refer to as the path hypothesis will be useful for on-line functional

assignment.
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Path Hypothesis: As pixels from an object are sequentially received, the
object accumulates in a fashion such that the object is increasingly well
defined. The path of sequential association which the pixels follow in the
spectral space form a continually evolving hypothesis regarding the
object definition. Segments in this path are determined on a spectral
basis relative to the then current status of all other adjacent objects by the
spectral variation between two consecutive points in the path using a
specific metric to be defined presently. Segments in the path are also
determined based upon the spectral separation between the current and
the most recently preceding pixel of that object in spatial space, thus
incorporating both spectral and spatial information in the association of

pixels with objects.

Fig. 2.8. Two adjacent objects in the observation space

Notice that the sequential nature of this hypothesis is significant. For

example, consider the hypothetical distribution of the points of two object in
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spectral space as shown in Fig.2.8. The path by which they might have
accumulated is illustrated in Fig.2.9 and is such as to explain how such an

overlapping class structure is feasible.

Fig. 2.9. Two objects are represented by the corresponding path-segments

Notice theoretically, there is only one specific path-segment, P, in the

spectral space defined by an object, and the path sequence cannot pass
through another portion of the observation space, Fig.2.9. The separation of
the two objects based upon the paths are made possible by the spatial

dependency in the path definition.

Piij=® for all i#

In other words, the existence of a partition that completely separates objects

is substantially increased by the path-hypothesis; and also, non-adjacent
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objects which belong to the same class, but are spatially separated by the
other objects, have different path-segments and even might be nearly

identical in the observation space.

It should be realized that the path-segment Pi is defined in the spectral
space and it is different from a spatial path in the scene. A path-segment Pi
is represented by its spectral-feature Si, spectral variation regularity Vi, and

the path end point in-1‘

The path hypothesis thus determines a possible sequence of points in the
observation space for each object, which implies that each object forms a
well-defined sequence in observation space, called the path-segment.
The succession of consecutive observations describes a particular trajectory
in the observation space. Any change in the behavior of two consecutive
points (the end point of the path-segment in_1 and the current pixel Xk) in
this trajectory can define a start point of a new path-segment. i.e. the

detection of a new object follows that of the detection of the end of a path-
segment (in=0).

The sequential nature of this method and its on-line implementation cannot
wait for the complete trajectory for decision making about a small path-
segment. We thus propose to determine the apparition of a new path-
segment (new object) by nw/2 past observations and nw/2 following
observations, which these observations supposed to represent the initial
intra-object rule. Then the process will continue based on the intra-object

rule until a new object be detected.
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in this work a functional for testing the unity relationship between the pixel-
feature Xr and object-feature Yi based on the Ghassemi-distance in the

Diamond space is introduced. Where the Ghassemi-distance is a metric that

normalize the spectral distance by their spectral gradient vector.
T -1
Oy (¥, %) = (18- X, ) (@V, + BVy)

d2

ni+d

where a= - and B=

|
+d

Vi , Si , and n, are the same parameters as defined in section 2.5. As
previously stated when the number of pixels within an object is not sufficient,
we incorporate Vn into the normalization factors. Where Vn is the spectral

variation-vector built on nw/2 past observations and nw/2 following

, . 1. ,
observations (see also chapter three). The inverse of a vector, V , is defined

by the following relationship between their corresponding elements:

-1 41 -1
Vo=[Vvi, V-0V ]
Notice the functional is normalized and the distance is compared with unity,
i.e. this functional maps the pair of object-feature and pixel-feature into two

disjoint exclusive regions.
ag(.):FxP—> [0,1)U[1,00)

The first region is the interval [0, 1) with the property that any pair that have
been mapped into this interval satisfies the similarity criterion. The second

region is [0, ©°) that indicates the unity relation test is failed.
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2.8 Object-Feature Extraction

In this work we restrict consideration to a case in which all pixels making up
an object have quantitative and conceptual similar attributes. It is assumed
that two adjacent objects differ in a measurable way relative to the spectral or
contextual features, based on the Ghassemi-distance. Each object is

represented by a set of three parametric primitives (Si, Vi , Li ), which are

explained in section 2.5 in this chapter.

Based on the path-hypothesis, the data read sequentially into the system. A
present pixel is compare with its adjacent ob}ects (path-segments in the
observation space) for the unity relation test. If the distance between pixel-
feature Xk and object-feature Yi is less than unity , ag(Yi, Xk)<1, then this pixel
will be annexed to this object, and the object-feature will be updated. This
comparison will be done for other possible adjacent objects, and if there is
another object which has a unity relation with the pixel, then this object and
the former one will be merged. If there is no adjacent object to have the unity
relation with the pixel, then this pixel will be a singular object. This procedure

is illustrated in chapter three.

Let Xr be the feature of an unknown pixel P i which has a neighboring set Ar
And let Yi be the object-feature estimated from Pi. If Xr has the unity relation

with the path-segment Pi:

0,(Y,X)<1 and reA & RP,X)=1

this implies that X, belongs to the object Pi ; hence, the index k should annex

to Li ; Pi, and X, can be represented by the same feature Yi. In practice the
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object Pi and the pixel Xr are merge to Pi in the feature space simultaneously

with the object detection process.

The pixel annexation process, Pi=PiUXr . in the observation space is

equivalent with the object-feature updating. As it had been pointed out in the
section 2.5 in this chapter, an object is represented by a set of three

parametric primitives Yi = (Si, Vi , Li ). Thus, the object-feature updating can

be performed by the following computations:

nS. + X

S= [ |

i ni+1
_nivi+lxk'xk+1|

vi= ni+1

L= LiU k

After object-feature extraction, the next step is to measure the feature
reliability in feature space (these two steps occurring simultaneously in this
case). This process tests the object validity and fusion (merging) tendency of
the object in feature space. The object may be merged consistent with the

objects' features in feature space.

For a fusion tendency test, the transitive property of the unity relation is used.
Two objects in the feature space can be merged if they have the unity

relation.

Lemma: If a single pixel has a unity relation with two different objects

simultaneously, then both objects have a unity relation with



53

each other, they have a fusion tendency, and they should

merge to a single object.

Proof: Let Xr be the pixel that has the unity relation with the objects Pi

and Pjsimultaneously. Then, the following relations hold

simultaneously:

%(Xr, X )=1forall X eP.;and ‘.R(Xr, X, )=1 forall X e Pj

by the unity relation transitive property. This implies that

9{(Xr, Xh)=1 for all X € PiUPj

This implies that Xr belongs to both objects Pi and Pj
simultaneously, or belong to a new object, P, . which is the

union of the objects Pi and Pj including the pixel Xr itself
P=PUPUX
] i ] r

In practice the objects Pi and Pj are merged to P' in the feature space

simultaneously with the object detection process, where it is equivalent with
object-feature updating in the feature space. Where object-feature updating

are performed by the following computations (see section 2.4).
L'=LiULjU r

nS. +nS + X
[ ]

S'= ni+nj+1

nV.+nV +|X-X |
i i r-1

V =
I m+m+1
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Since during the object detection the information of the pixel-features is
compacted into the object-features, the fusion tendency test depends only on
the object-features; e.g., Yi and Yj. Thus this operation is very fast and is
equivalent with the processing of a single pixel, as measured by the

computation time required.

2.9 Summary

A scene can be represented by features of spatially disjoint objects, rather
than the pixels' features. The pixels of an object have a unity relationship,
which can be realized by a path hypothesis by means of an efficient

functional ag(.). This functional tests the unity relation between pixels. Based

on such a scheme, an object is realized as a path-segment in the
observation space Pi, where the path's elements, Pi={X1i,X21, Xni}, carry
equivalent useful information about the scene. The sequential nature of the

method let the process implemented on-line. Each path-segment is
represented by a relevant object-feature set Yi=‘{’(Pi) in the feature-space.

Finally, the set of object-features F=(Y » Y2, Yno}, rather than pixel-features

set P=P1UP2U UPno, is used for data transmission and for the

classification process as well. The next chapter explains the object detection

and feature extraction algorithm.

Let P=F be the basic relation between observation space and feature space.

Then PreYi implies that: Yi represent equivalent useful information about the

scene to that the object Ps' Once each object-feature, Yi , is classified, the
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memberships of pixels which belong to the corresponding object are

determined simultaneously, regardless of the pixels' location in the scene.

The spectral information of surrounding pixels is correlated with the
corresponding pixel. This dependency appears in the form of contextual
features that are incorporated in the object feature extraction. Because both
contextual and spectral features are used in the feature extraction process,
one might expect classification accuracy to be higher in object-feature
classification using the object-feature rather than pixel by pixel classification,
using the pixel-feature. In other words, it is more likely that the classification
of ground cover fields in the feature space based on the object-feature can
be more accurate and efficient than the pixel by pixel classification in the
original pixel-features. Since the classification process is performed in the
feature space rather than in the observation space, the algorithm has the
potential to be faster than a conventional one. This results from the fact that
the size of the object-feature-set is much smaller than the size of the pixel-

feature-set. The performance of object-features is presented in chapter four.
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CHAPTER 3
ON-LINE UNSUPERVISED OBJECT-FEATURE EXTRACTION
ALGORITHM

3.1 Introduction

As has been pointed out, the reduction in complexity and costs associated
with the analysis of multispectral image data, data transmission, storage,
archival and distribution is an important task of on-line unsupervised object-
feature extraction. The ambiguity in the object detection process can be
reduced if the spatial dependencies, which exist among the adjacent pixels,

are intelligently incorporated into the decision making process.

AMICA uses unity relation for object detection. In this work, the unity relation
among the pixels of an object is constructed with regard to the: adjacency
relation, spectral-feature and spatial-feature characteristics in an object; i.e.
AMICA uses the within object pixel-feature gradient vector as a valuable
contextual information to construct the object's features, which preserve the

class separability information within the data.

Based on the path-hypothesis the data read sequentially into the system and
the unity relation between a current pixel and the path-segments (objects in

the observation space) will be examined. This pixel may then be merged into
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an appropriate object or it may initiate a new object. As explained in section

2.5, an object will be represented by the object-feature set.

Typically the performance of an object-feature extraction algorithm is
measured by the performance of the object-features with respect to the pixel-
features, as well as by its implementation complexity. The complexity of
object-feature extraction algorithm is a particularly important consideration in
the hardware implementation and required computation time. The

performance of object-feature is presented in the chapter four.

In this chapter we focus on the reduction in complexity of AMICA with no
degradation in the accuracy of the process. This is a challenging and

sophisticated task especially when it is to be implemented on-line.

AMICA consists of four distinct activities, Fig.3.1:

1- functional estimation

2- unity relation test

3- feature extraction and feature reliability test
4- feature transmission

All of these activities can be performed and implemented by AMICA as
explained in the previous chapter. In this chapter we try to optimize
performance of the AMICA, in the sense of CPU time and memory
requirements for implementing the feature extraction process. This can be
achieved by optimization of the number of past and following observations,

n, for initiation of a new object, as explained in section 2.7, to minimize the

required memory. Also, it can be achieved by redundancy reduction in the
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number of unity relation and feature reliability tests, to minimize the

computation time for decision making.

Input
MSS Data

Functional
Estimation

y

Unity
Relation Check

Feature Extraction
and
Feature
Relevancy Check

Feature
Transmission

Fig. 3.1. Real-time object-feature extraction activities
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In the next section we introduce the necessity of an assignment of a window
for removal of the feature extraction dependence on the scanning direction
which may occur in the case of initiation of a new object. Then section three
will explain how one can reduce the number of operations per node for the
unity relation and feature reliability test, by using the unity relation properties.
Finally, section four explains the algorithm procedure and the flow chart of an

optimized AMICA.

3.2 Optimal Window Size Assignment

To apply the unity relationship test to a pixel we must first estimate the within-
object spatial parameters, Vi. The estimated parameters are used to
generate a normalized metric (functional) for evaluation of unity relation
within each object. It is assumed that the object is large enough to obtain a
reliable estimate of the model parameters. The object is assumed "large" with
respect to the "d" dimensionality. To estimate the parameters at each point
we proceed as follows. Suppose the spatial parameters evolve slowly over
each object. As pointed out in the previous chapter, because of the
sequential nature of AMICA and its on-line implementation the system cannot
wait for the complete trajectory for decision making about a small path-
segment. Thus, generally there are two cases that should be considered for
functional assignment and feature selection (see section 2.5):

1) In the first case, the number of pixels within the object is sufficient for

contextual feature extraction. In this case the object will be represented
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by both spectral and contextual features, and the dominant factor to
normalize the functional is the Vi extracted within the object Pi.

;
Vi=n._-1—zvaxk

! ke Li

2) Inthe second case, the object is small, or the number of pixels within the
object is not sufficient for contextual feature extraction. In this case the

object will be represented only by the spectral features, and we
determine the validity of a new path-segment (new object) by nw/2 past

observations and n /2 following observations accomplished within a

window. These observations are presumed to represent the initial intra-

object characteristic. In this case the dominant factor to normalize the
functional is the Vn extracted within an appropriate window.

n

2.
1
v“—nw-1 2:1 Vﬁxk-l

=
2

In this work the spatial direction & is defined to be in all of three horizontal h,
vertical v, and diagonal vh spatial directions (see appendix C). In the second
case there is a potential problem with the feature extraction (if Vn is not
incorporated into the functional); that is, the object-feature inherent
dependence on the order in which pixels and the small objects (if there is
some) are examined for unity relation. Figure 3.2 illustrates eight of the

possible ways that data can be read into the system.
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Fig. 3.2. Eight possible scanning directions for reading data into the system
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Thus there are eight approaches that a pixel can be examined with the
adjacent small objects (if there is some) sequentially. For example, a left-
right, top-down scan may not yield the same initial objects extraction as a
right-left, bottom-up scan does. In other words, on-line object detection

outcome is dependent on scanning direction when the objects are small.

The unity relation based on the path-hypothesis provides that the scanning

direction dependency can be minimized by selection of an efficient window

size, n,,, and appropriate position for the window, Fig. 3.3. This dependency
can be significantly reduced by measuring the feature reliability among the

adjacent objects.

Width of window
A

Height
of < P

window

Fig. 3.3. Position of the pixel in the window for functional estimation
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Now, the detection of a new object is built upon the n,/2 past observations
and n,/2 following observations. In this way the scanning direction
dependency is minimized; objects will be grown until the number of pixels
within an object is sufficient for contextual feature estimation. Then the local
spectral gradient will be the important factor for functional assignment. As it
is shown in chapter two, in practice, object growth will be accomplished by
adjustment of the coefficients a and f in the functional.

)T

0y (Y, X) =(1S,- X, )@V, +BV,)”

The memory requirement and CPU time for functional assignment are
proportional to the size of window, n,,. Since the data is read into the system
line by line, we try to minimize the number of lines per window to optimize the

CPU time and storage for functional normalization. On the other hand,

reduction in the number of lines in the window, n , increases scanning

I ¥
direction dependence, which reduces the quality and performance of the

object-features.

In an experiment several types of multispectral image data (see chapter four)
are used. As a criterion for evaluation of the effect of the window size, the
performance of the object-features versus the original pixel-features is
presented. Figure 3.4 illustrates the effect of the window size on
performance of the object-features where the performance is represented by

the percentage of correct feature classification.
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In this figure the width of the window is fixed and is equal to the number of
pixels in each scan-line, n_, thus the height of window, n, (number of lines in

the window), is used as the reference for window size.

100
—— object-feature

97 -—e— original pixel-feature
c
L
©
2
‘@
[72]
K
(3}
S
o)
E
8
2 —r——— 00— ———0— ¢
88

85 r ——r——r—r —r ———————

——r—r—7— —r —r—— v
2 5 8 11 14 17 20 23 26 29 32
height of window {nl)

Fig. 3.4. Effect of window size on the feature performance

The results of this experiment show that, for the data set used, if the width of
the window be equal to n_or greater than 64, practically, the optimum height

for the window is eight or ten lines per window.
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3.3 Reducing the Unity Relation and Feature Reliability Tests

The multispectral image data are read into the system sequentially in the

raster scan oriented format, where each pixel can have at most eight

adjacent neighboring objects. Let p be a pixel under consideration and O,
0., 0,,..,0,,0,_ be the eight adjacent neighbors of the pixel p, Fig.3.5. If the
the unity relation exists between the pixel and any of those objects, the pixel-
feature will be combined (feature fusion) with the corresponding object-

feature, and the pixel location will be annexed to the spatial-feature-map.
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Fig. 3.5. Eight adjacent neighboring objects
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As it is explained in chapter two, pixel p is represented numerically by the
vector X,, and its eight adjacent neighbors O, , O, , 0, ... O, can be
represented by corresponding path-segments P, , P,. P, ..,P,, o0rby

their features Y, ,Y,,Y, ... Y, respectively. Notice as pointed out in

k1 ! k2 ? k8

section 2.7, in practice a path-segment P, is represented only by its spectral

feature S and its end point X_. AMICA tests for the

spatial feature V

Kt ? ki’

existence of the unity relation between X, and its eight neighbors.
Simultaneously the system measures the feature reliability of the eight
neighboring objects and tests for shrinkage tendency and for all possible
combinations between the eight neighboring objects' features. In other
words, given a pixel X _in the observation space, regardless of the existence
of the unity relation, AMICA should test for feature reliability and any other
possibility of existence of the unity relation among X, and P, , P, , P, ...Pg
. For example, if the unity relation exists between X and P, , after
annexation of p to O_ in the feature space (connection of X to the path-
segment P, ) the algorithm should continue for testing the existence of the

unity relation and shrinkage tendency between P, and other neighboring

features and continue measuring the object-feature reliability.

For any incoming pixel observations, X, there are 256:28 possible cases in

the observation-space that the algorithm should check for unity relation and
feature reliability: st cases if all of the 8 neighbors belong to 8 different

classes, C: cases if all of the 8 neighbors are from only 7 different classes,
C: cases if all of the 8 neighbors belong to only 6 different classes, CdB
cases if all of the 8 neighbors belong to only 5 different classes, C: cases if

all of the 8 neighbors belong to only 4 different classes, C: cases if all of the
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8 neighbors belong to only 3 different classes, C: cases if all of the 8

neighbors belong to only 2 different classes and C: case if all of the 8

neighbors are from the class, where:

k k!

Co= ni(k-n)!

The symmetric property of the unity relation provides for AMICA to reduce the
number of check points per each pixel by using only the first four adjacent

neighboring objects, Fig.3.6, instead of eight adjacent neighboring objects.
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Fig. 3.6. Four adjacent neighboring objects

Proposition 1: Based on the unity relation properties, the results of AMICA,

using the first four adjacent neighboring objects, are equivalent to the results
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of AMICA, using eight adjacent neighboring objects when the input data is

read by of the system sequentially in the raster scan oriented format.

Proof: Assume that AMICA checks the unity relation and feature reliability

and P., and then starts repeating the same

only among X , P,,,P,,P

ki ? k2 °’ k3’ k4

procedure among X , P ,P_,P_ and P, where X is the first East adjacent
pixel to X,. But in this new coordinate, Y, is the same as Y, and Y, isthe
same as Y, , also Y, is equivalent to X, in the feature space. This implies that,

mathematically, AMICA will check the unity relation and feature reliability for

Y,. in the next incoming pixel X , and since the unity relation is transitive and

symmetric, the outcome will be the same as when X, and Y, are considered

together for the unity relation and feature reliability test.

The same situation exists for P, P, and P, in the sequence of the next line
scan, where the unity relation and feature reliability of at least one pixel from
each of these path-segments (P, , P,, . P, ) with X, will be checked in the
feature space. In other words, since the unity relation is symmetric,
mathematically the last four adjacent neighbors of X (P, P,,, P, and P )
will be considered in the next incoming pixel data and the next sequence of
scan line data. This approach for testing the unity relation is much easier to
implement because there are fewer objects to compare simultaneously and

fewer object-features to be tested for feature reliability.

Using the first four-adjacent neighbors, AMICA should still check 16=24
possible cases per each pixel for existence of the unity relation and feature

reliability in the feature-space.
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Proposition 2: For any given pixel X, the unity relation and feature

reliability test is redundant for all of the cases in which two of the neighboring
k1’ Ykz ]’ [Y Yk4 ]’ [Y Yka ]' [Ykg s YM ],

[Ym 'YIQ ’ ch]’ [Ykl ’Yk2 ’ Yu]' [Ykz ’ Yka ’ YM]' [Ym 'Yk3 ' YM] and [Ym 'Yie ’Yka 4 Ym]‘

objects have an adjacency relation: [Y, . 2
In other words, the only relevant cases that should be considered by AMICA
for unity relation and feature reliability test, among X and its adjacent
neighboring objects, are: [P, ], [P, . P,], [P,).[P,].[P,.P,]and [P,].

kt ?

Proof: Among the eight neighboring objects of X , for any two adjacent
objects there exist at least one pixel at their boundary, X, , that has an
adjacency relation with X . Using the first four adjacent neighbors, the pixel
X, has been checked for the unity relation sequentially before pixel X, , and

since X _and X are adjacent, the transitive property of the unity relation
provides us that checking for the unity relation and feature reliability for those

adjacent objects is redundant, where

R(X, X )=1 & cJ{(Xk, P)=1forany bel,

Therefore, the unity relation properties provide that an efficient algorithm for
each pixel should check at most the first four neighboring objects, and, as

shown in the previous proposition, there are only two possible cases,
[Y,,,»Y,land [Y

k3’

. Y.. ], that feature reliability of object-feature need to be

checked. These two cases are the same as those for which the shrinkage

tendency among four neighboring objects should be checked, [P, , P, ] and

k1’

[P,.P,]
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Based on path hypothesis and the unity relation properties at each node
there is only one of the following cases that two objects can merge together.
In the first case X_has a unity relation with P, and P,, simultaneously. Then
both objects should be represented by a single feature. Figure 3.7. illustrates

this activity in the feature map. The features will be updated as it is explained

in chapter three. The second case for merging two objects occurs when X,

has a unity relation with P and P, simultaneously. Then the feature map
should be updated, as it is illustrated in the Figure 3.8, and both objects will

be represented by the same object-feature.
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Fig. 3.7. The first possible case for merging two objects in the spatial-feature-
map
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3.4 AMICA Explanation

The flow chart of AMICA is illustrated in figure 3.9. The multispectral image
data is read into the system in the left-right, top-dbwn raster scan format. To
begin the process the local pixel-feature gradient is estimated and
normalized within the window. After a start period, the window is shifted such

that the pixel under consideration is always in the middle line of the window.

An unknown pixel p[i'n is compared with its four adjacent objects by testing
the unity relation between the pixel-feature Xk and corresponding path-
segments (Pk1 , sz Py Pk4). If the unity relation exists then the pixel will
be connected to the corresponding path-segment. If more than one path-

segment were selected then the corresponding objects will be merged
(Pi=Pk 1UPk3 or Pi=Pk3UPk 4). If the unity relation does not exist among any of

those four adjacent path-segments compared with Xk, then Xk will be
initialized as a new path-segment, Pi=Xk. After each decision making and

feature reliability check, the features of the corresponding object ( Yi) will be

updated.

The boundary of object (in the spatial-feature-map) is checked for closeness,
and then the feature of the closed object will be transmitted to the earth-
station. At each node, for unity relation and feature reliability test, the system
needs only the information about the adjacent objects, and the coefficients of
the functional are necessary only for the open objects. This implies that the
compaction system required only information about the open objects in the

last two lines.
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transmit
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Fig. 3.9. Flow chart of AMICA
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Thus, the system should store at most only 2nx object-features. When the

object is closed and its feature transmitted, the corresponding buffers for

functional assignment will be reset and ready for a new coefficients

assignment. In chapter four, results of implementation of AMICA to the real

data are presented.

In summary AMICA consists of four main activities:

1-

functional assignment: the coefficients for functional normalization
are measured statistically within the window W, where Xk belongs to the

middle line in this window (see page 51 and 64).

unity relation check: Given any pixel Xk the unity relation between Xk
and all four adjacent neighboring objects, Pk1 . sz , Pka and Pk4 are
checked and Xk will be assigned to appropriate path-segment, Pi.

feature extraction and feature reliability test: the spectral and
contextual feature of an object will be extracted and the feature
reliability will be measured by using unity relation properties, where two
objects may be merged and will be represented by the same object-

feature in the feature space.

feature transmission: by using the feature map, the boundary of each
object is checked. Any time that AMICA finds that the boundary of an
object is closed, the features of the corresponding object will be

transmitted to the earth-station.
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CHAPTER 4
FEATURE EVALUATION

4.1 Introduction

The objective of this chapter is to demonstrate the validity of the unity relation
and path-hypothesis for on line unsupervised object-feature extraction and to
show that performance of the object-features is better than the pixel-features.
The performance of a feature extraction process is measured in terms of the
information-bearing quality of the features versus the size of the data set.
Classification accuracy is an important quantitative measure of feature quality
in applications where the data is automatically interpreted (e.g., remotely
sensed image data). However, classification accuracy is dependent on the
classification algorithm as well as the feature extraction technique, and often
significant accuracy improvements can be obtained by tailoring the
classification algorithm to the specific feature extraction technique. Therefore,
it is important to investigate jointly feature-extraction and classification when
the feature quality (relevancy of the features for scene representation) is

based on classification accuracy.

In this chapter several real image data sets are used to provide comparative

performance results for the various feature configurations between the
original pixel-features Xk and compacted object-features Y.. The features’
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reliability and quality are measured in terms of overall misplacement error in
the scene (OME), feature classification performance (FCP), and subjective
objects appearance (SOA). The same training samples and decision rule are

used for each comparison, Fig. 4.1.

4 )
Data Set
. Xy
Compaction &= .
Training
Set
- J
Y. X
k
v v
Classification |« ‘ »1 Classification
Comparison
1- OME criterion
—> <—

2- FCP criterion

3- SOA criterion

D

Fig. 4.1 Feature reliability evaluation
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The first evaluation is a simple quantitative criterion which has a convenient
mathematical form to measure the number of pixels assigned to an incorrect

neighboring object based on the object classification, relative to the total

number of pixels in the scene (overall misplacement error). Let GTM={r, r,,...,
rq represent the ground-truth-map of the original data, and let CPM={c,,C5,...,

c,} represent the classification-pixel-map result of feature classification. Then

the overall misplacement error can be computed by comparison of the CPM

and the GTM:

n
OME=1OOF'E
t

where n_ is the total number of pixels misplaced into incorrect neighboring
objects (based on the object class), and n, is the total number of pixels in the
scene. The first features' evaluator, also, measures the quality of object’s
spatial shape and boundary accuracy in terms of overall misplacement error.
The OME is not generally meaningful for measuring the features quality in an
absolute sense. For example, it would not usually be useful for comparing
feature quality across different feature selections. However, the OME can be
very useful for comparing the performance of the options (e.g. window size)
of the feature extraction technique on the same multispectral image data

using the same classification algorithm with the same training sample sets.

The feature classification performance (FCP) measures the number of pixels
classified into the correct class relative to the total number of pixels in that
particular class. This criterion is used to evaluate the object-feature
performance when the effects of classifier decision rule and training samples

on the class feature performance should be considered.
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Good ground truth information is a very important parameter in feature
evaluation to minimize the unrelated error in the feature extraction. However,
obtaining a valid ground-truth-map (GTM) and registering the multispectral
image data with this map is often costly and very time consuming. Thus,
among the available real data those subsets which have a relatively reliable
ground-truth-map should be selected and used for the OME and FCP feature

evaluations.

The subjective appearance is an appropriate criterion when the ground-truth-
map is not accurate enough to be used by other feature evaluators, or when
some objects in the scene are more important than the others regardless of
the size of the objects. In such cases it is often too difficult to define a
mathematical expression for a feature quality adequate for quantitative
evaluation. In tis case visual assessment will be used for this kind of
qualification. This criterion is used to evaluate the spatial quality of the
spatial-feature-map, for prediction of more information about the scene, by
using more complex features, which should be extracted from the training
samples. In other words, by incorporating the object appearance in the
spatial-feature-map into the feature selection strategy, more complex objects
in the scene can be detected. For example some significant within-class
variation shows that more information about the complex objects (perhaps
soil type covered by vegetation) in the scene might be extracted by using

even more complex features.

In this chapter after an introduction to classification decision rules in section

4.2, the experimental results will be presented in section 4.3.
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4.2 Classification

Classification is the procedure most often used for quantitative analysis of
remote sensing image data. It rests upon using suitable algorithms to label
the pixels (or objects) in the scene as representing particular ground cover
types, or classes. In classification of the compacted image data, once each
object-feature is classified, the memberships of pixels which belong to the
corresponding object are determined simultaneously regardless of their size
and location in the scene. Irrespective of the classification algorithm, this

procedure consists of the following essential practical steps [32]:

. Choose representative or prototype pixels from each of the desired
set of classes (for example water, urban regions, cropland,
rangelands, etc.). These pixels form a training set. Training sets for
each class can be established using site visits, maps, air
photographs or even photointerpretation of a color composite
product forrﬁed from the image data. Often the training pixels for a
given class will lie in a common region enclosed in a border; that
region is then called a training field (the contiguous training fields

are used for within class context parameters estimation).

. Use the training data to estimate the parameters of the particular
classifier algorithm to be used; these parameters will be the
properties of the probability model used, or will be the equation that
defines partitions in the multispectral space. The set of parameters

for a given class is called the class-feature set of that class.
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. Using the trained classifier, label or classify every pixel (or object) in
the scene into one of the desired ground cover types (information
classes). Here the whole scene segment of interest is typically

classified.

. Produce tabular summaries or thematic (class) maps which

summarize the results of the classification.

In this chapter, to evaluate object-feature reliability two different classifiers
are considered: the Maximum Likelihood classifier and the Minimum

Distance classifier [4].

4.2.1 Maximum Likelihood Decision Rule

Maximum likelihood classification is the most common supervised
classification method used with remote sensin‘g image data,; this is developed
in the following in a statistically acceptable manner [11]. Let the ground cover
classes for a scene be represented by: o, i=1,2,...,m, where mis the total
number of desired classes in the scene. Suppose that sufficient training data
is available for each ground cover type. This can be used to estimate a

probability distribution for ground cover type that describes the likelihood of
finding a feature from class @, at the position of X. The maximum likelihood

decision rule decides that X belongs to o, if and only if
P(X|o)p(w)>P(X|)p(w) forall j»

where p(Xle) is the class (Di probability density function evaluated at X , and

p(u)j) (so-called a-priori probability of class (oj.) is the probability that class 0)j
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occurs in the scene. Computational convenience results in definition of the

discriminant function gi(X) (11]
g(X) = In{p(X|w)p(w)} = In{p(X|@)}+In{p(e)}

where In is the natural logarithm, so the maximum likelihood decision rule

becomes

Xe® < GX)>g(X) foral j

A very common classification approach in multispectral image data
application is the maximum likelihood Gaussian parametric classifier on a
per vector basis. This classifier is often used because of its relatively simple
implementation, especially when the spectral features are the only features
that are used for object representation. Then the discriminant function for
maximum likelihood classification, based upon the assumption of Gaussian

distribution, is:

g(X) = In{p(@)} - 0.5IN[Z| - 0.50-M)" T (X-M)

where Mi and Zi are the mean vector and covariance matrix of the data in
class ®, which is estimated from the training samples. Let n, samples be from

class ®, then the mean and covariance of the each class are estimated by

the following equations:

n

1

Mi = X
k=1
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Often the analyst has no useful information about the p((oi). In this case a
situation of equal prior probabilities is assumed. As a result In{p(mi)} can be
removed from the discriminant function, since it is the same fori=1, 2, ..., m. In
that case the 0.5 common factor can also be removed. Thus the discriminant

function can be simplified into:
t -1
gl(x) =" Inlz'l - (X-M') Zi (X-MI)

Sufficient training samples for each ground cover class must be available to
allow reasonable estimates of the elements of the mean vector and the
covariance matrix to be determined. For a d dimensional multispectral space
at least d+1 samples are required to avoid the covariance matrix being
singular. Apart from this condition it is clearly important to have as many
training pixels as possible, particularly as the dimensionality of feature space
increases, since in higher dimensional spaces there is an increased chance
of having some individual dimensions poorly represented [19]. Swain [4]
recommends as a practical minimum that 10d samples per class be obtained

for training, with 100d as being highly desirable, if it can be attained.

The effectiveness of maximum likelihood classification depends upon a
reasonably accurate estimation of the mean vector M and the covariance
matrix X for each spectral class. This in turn is dependent upon having a
sufficient number of training pixels for each of those classes. In cases where
this is not so, inaccurate estimates of elements of X results, leading to poor
classification. When the number of training samples per class is limited it can
be more effective to resort to a classifier that does not make use of

covariance information.
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4.2.2 Minimum Distance Decision Rule

When the number of training samples per class is limited to have a
reasonably accurate estimation of the covariance matrix X for each spectral
class, the minimum distance (M.D.) classifier [11], is an alternative which to
solves the problem of the M.L. Gaussian classifier. Also M.D. classifier can
be useful when the other object's parameters such as contextual features
(local spectral gradient) together with the spectral feature are used for data

classification.

The assignment of an unknown pixel to a class is based on the minimum
distance decision rule, where the degree of assignment of pixel to each
object would depend on the relative distance between the object-feature and
each class-feature, estimated from the training samples [11,40]. With M.D.
classifier, training data is used only to determine class-features [32]:
Classification is then performed by placing an object-feature (or

pixel-feature) in the class of the nearest class-feature. Let Y be an
unknown feature and ai(Y) be such a distance from class-feature of o, then:

Yew, & d(V)<0(Y) forallj»

As it was explained in chapter two, an object-feature can be represented by a
three-tuple (Sy, Vy, Ly ), where Sy is the spectral vector, Vy is the within object

gradient vector, Ly is the spatial-feature-map, and ny will be the number of
pixels in the object. Let n, be the number of pixels within the training field (Li)

used for class-feature estimation from class wi. Then the class-feature of (oi
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can be represented by three parameters (S, , Vi, n. ) where Si is the estimated

class spectral vector and Vi is the estimated within class gradient vector.

To incorporate the within-class contextual information into the minimum
distance classifier decision rule, a discriminant function based on a new
distance is defined, where in LP space [38] the general form of this minimum

distance classifier is defined by the following equation:

P ; 9i 9y
d (V) =(S,-S,), (gV, +g,V,) winviev,))

i
The coefficients g, and g, are defined by:

n. n

|
gi'ni+n and gv‘ni+n

y y

Again S and V are d-dimensional vectors and g is a scalar, In is the natural
logarithm, and the superscript "t" represents that the vector is transposed. The

subscript "p" denotes that the distance is measured in the L? space. The
operation ® between two vectors V ; and V2 is defined by:

where the scalars v, and v, are elements of vectors V, and V,, respectively.

The power "p" of a vector is defined by the following relationship between

their corresponding elements:
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- P - -
] P
1 1
p
2 2
P
Vd-1 Vd-1
p
Vd LVd

Then the inverse of a vector based on the above definition is unique, where:
-1
VeV =1

This minimum distance classifier may be attractive (specially when the CPU
time for classification of data be a significant parameter) since it is a faster
technique than the maximum likelihood classification: the speed of this
classifier is order O(d), however the speed of the M.L. Gaussian decision rule
is of order O(d2). In the maximum likelihood classification each class is
modeled by a multivariate normal class model; however, the Gaussian
assumption is not used in this minimum distance technique. Notice that
though several ground cover classes can be classified by this M.D. classifier,
it might be more suitable to use the M.L. classifier (the M.L. classifier is

usually more accurate than the M.D. classifier).

In the next section the experimental test results are presented, where both
decision rules ( the Maximum Likelihood Gaussian classifier and the

Minimum Distance classifier) are used for feature classification.



87

4.3 Experimental Results

In this section the proposed feature extraction technique is applied to several
set of image data. As previously stated, the objective of these experiment is
to demonstrate the validity of the unity relationship and the path-hypothesis,
and to show that the performance of object-feature is better than the
performance of pixel-feature regardless of the choice of classification

decision rule and the training set.

The original of the first MSS data set (called Flight-line 210) is contained on
LARS tape number 165, file number 1, rune number 71053900. This file
contains Indiana agricultural data. The data has 12 spectral bands (0.46 um
to 11.70 um, Table 4.1) and was collected by the University of Michigan
Scanner. Corn Blight Watch Flight-line 210 was overflown at about noon on
August 13, 1971 from an altitude of 5,000 feet. The area covered was a
1.4x9.7 mile strip of farmland. There were 228 samples/scan line and 1161

scan lines for a total of 264,708 pixels.

Table 4.1 Flight-line 210 spectral bands

Spectral Band, pm
1 0.46 - 0.49
2 0.48 - 0.51
3 0.50 - 0.54
4 0.52 - 0.57
5 0.54 - 0.60
6 0.58"- 0.65
7 0.61 - 0.70
8 0.72 - 0.92
9 1.00 - 1.40
10 1.50 - 1.80
11 2.00 - 2.60
12 9.30 - 11.70
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The original of the second MSS data set (called Flight-line C-1) was
obtained from the sampled and quantized output of a 12-channel (0.40 pm to
1.00 um, Table 4.2) airborne scanner flown over predominantly agricultural
regions in Indiana. Flight-line C-1 was obtained on 28 June, 1966 at 12:30
P.M. The area covered was approximately 4 miles long and 1 mile wide of

farmland. There were 228 samples/scan line and 950 scan lines for a total of

216,600 pixels.

Table 4.2 Flight line C-1 spectral bands

T Channel Spectral Band, um
1 0.40 - 0.44
2 0.44 - 0.46
3 0.46 - 0.48
4 0.48 - 0.50
5 0.50 - 0.52
6 0.52 - 0.55
7 0.55- 0.58
8 0.58 - 0.62
9 0.62 - 0.66
10 0.66 - 0.72
11 0.72 - 0.80 _ﬂ
12 0.80 - 1.00

The third MSS data set has 7-channel spectral bands (three visible spectral
bands and four infrared spectral bands) which have been obtained from an
urban area and includes the O'Hare Airport. This area has 256

samples/scan line and 256 scan lines for a total of 65,536 pixels.

In addition, three single-band images with different complexity are used for
evaluation of feature extraction process by spatial-feature-map comparison.
These three are: "campus-512", which contains a portion of the the Purdue

campus in the visible spectral band: and the girl; and the space shuttle
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image. The former contained 512 x 512 pixels and the two latter contained

256 x 256 pixels.

As has pointed out, the reliability and quality of feature extraction process are
measured in terms of overall classification error, feature classification
performance, and subjective objects appearance. The performance of the
first two evaluators is highly dependent on the accuracy of the ground-truth-
map. Thus in order to minimize the effect of unrelated error in classification
performances, the first two evaluations (OME and FCP) are applied only to
the test areas which have a relatively accurate ground-truth-map (Fig.4.3 see
also appendix B). However the SOA evaluation is applied to the whole area

in all of the data sets.

4.3.1 Feature Classification Performance

The original pixel-features and the compacted object-features are used
separately to determine the classification accuracy in each space. This
evaluation is done by comparing classification performance in these two
particular spaces. The results of each trial can be presented in comparison

tables, where in each table three different parameters have been considered:

. classification performance
. compaction coefficient
. CPU time for classification.

The set No.1 contained 9 different ground cover classes (appendix B), which
the 12 channels spectral imagery of this area are presented by Fig.4.2.a and

Fig.4.2.b. Tables 4.3 and 4.4 are examples of feature evaluation using two
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Fig.4.3 Ground-truth-map of data set No.1
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Table 4.3. Feature performance using Bayes-ML classifier (set No.1)

Performance of Pixel-Features

Number of Features=369,600 Bytes

Compaction Coefficient =1

True Class Number of Samples Classified
Total# |Corn|Soy. WoodWhe.][Sud.[Oats IPas. Hay [Non | %Correct
IL Comn 10104 89421102 {145 149 [ 1 22 0 22 |721 88.5%
Soybeans 12910 6 [11717]482 |108] 8 87 0 14 1488 90.8%
Il Woods 389 4 11013281 3 | 0 1 2 1o ]41 84.3%
Wheat 944 0 8 8 17321 0 24 | O 9 [163 77.5%
Sudex 1219 0 17 0 0 [1175] 21 0 2 4 96.4%
Qats 603 1 12 0 8 3 |508] 0 28 | 43 84.2%
Pasture 339 0 0 0 0 0 0 13071 0 32 90.6%
I Hay 746 [ 22 ] 1 1 J21 1 3 [52] 0 [592] 54 79.4%
] Nonfarm 3546 17 169 | 14 | 68 1 111 ] 9 81 B176 89.6%
| Totals 30800 18992 11936] 978 {1089 [1191]826 | 318 | 748 |a722] 89 2%

Overall Performance = 89.2%

Performance of Object-Features

Number of Features=13,692 Bytes

Compaction Coefficient =27

True Class Number of Samples Classified
Total# [Corn|Soy. WoodWhe.[Sud. [Oats Pas. {Hay {Non |%Correct.
i Corn 10104 196921123117 |67 | 0 | 6 | 0 |66 |233] 94.9%
[__Soybeans | 12910 | 24 h2409]209] 74 | 1 | 27 0 |11 ]155] 96.1%
Woods 389 0 14 138510 Jo0ofofJoTlo o 99.0% |f
Wheat 944 6 |11 (12 ]824] 0 [11 ] o 0 |80 ] 87.3%
Sudex 1219 | 0 | 9 [ o 0 1193/ 13 ] 0 3 1 97.9%
Oats 603 4 1 0] 2 0 I588] 0 0| 8 97.5%
Pasture 339 010 0]o 0 0 339 0 0 100.0%
Hay 746 {4510 [0 [T o 9 1 0 |eg1] 0 92.6%
Nonfarm 3546169 [136]| 12 |94 | 8 |244] 0 |118 P865| 80.8%
Totals 30800 19740 }12693] 635 [1061 [1202 [ 890 [ 339 | 889 |3342] 93 8%
Overall Performance = 93.8% CPU Time = 18.8 seconds

Comparison:

................................

...................................

......................................

515/18.8

369,600/13,692 = 27.0
from 89.2% to 93.8%

=27.4
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Table 4.4. Feature performance using Bayes-ML classifier (set No.2)

—

Performance of Pixel-Features

Number of Features=115200 Bytes

Compaction Coefficient =1

True Class Number of Samples Classified
Total# |Corn[Soy. Wood|Whe.[Sud. |Oats | Pat. Hay |Non PiuCorrect
Corn 2400 [2250] 0 [146] 0 | O 1 3 Jo]o 94%
Soybeans 2400 0 2322|176 ] 0 0 1 1 0 0 97%
Woods 800 3 1 [785] 5 0o |0 |O 6 ] O 98%
Wheat 800 |17 ] 0 [111]767] 0 | 5 | O 0]o 96%
Sudex 800 oloto /o 791]5 104160 99%
Oats 800 0 1o 1l9 |7 10 |719/63 ]2 |O 90%
I Pasture 800 1 0 10 lolo o 987011 ]6O 87%
| Hay 800 0o [2 [11] 2 0 2 15 ]|768] 0 96%
i Nonfarm 0 o JojfojJojlojJolo 0 ]o 100%
I Totals 9600 l2270pR325[1038]781 7918311783 ]781] O 94.8%

Overall Performance = 94.8%

CPU Time = 22.20 seconds

Performance of Object-Features

|r Number of Features=4236 Bytes

Compaction Coefficient =27

True Class Number of Samples Classified “
Total# |Corn|Soy. Wood[Whe.|Sud. |Oats | Pat. | Hay Non PeCorrect
Corn 2400 [2391] 1 6 0 0 0 2 0 0 100%
Soybeans 2400 0 J2399} O 0 0 0 1 0 0 100%
Woods 800 14 1 |77811 7 0 0 0 0 0 97%
Wheat 800 33 0 0 |767]1 0 0 0 0 0 96%
Sudex 800 0 0 0 0 |7921] 5 0 ¢] 3 99%
Oats 800 0 0 7 2 0 |767]18 | 6 0 96%

I~ Pasture 800 0 0 0 0 0 [12 |788] 0 0 gg%jl
| Hay 800 ol 713 0 0 o | 7 |783] 0 98%

I Nonfarm 0 0 0 0 0 0 0 0 0 0 100% {
it Totals 9600 [403pR328[12401729 [792 [851[770 (487 | O 98.6%

“ Overall Performance = 98.6%

CPU Time = 0.67 seconds “

Comparison:

Compaction Coefficient
Performance Improved

CPU time speed up factor

....................................

...................................
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To establish the unity relation, the system learns about the functional
coefficients simultaneously with the data acquisition process by measuring
the object spectral gradient which, is then, normalized within a window.
Classification accuracy is dependent on both the classification algorithm and
the training sample set, furthermore, it is slightly dependent on the window
size, which will be investigated in this section. Various multispectral image
data are used to measure object misplacement error versus size of window
for functional assignment. This corresponds to determining feature
performance as a function of window size n, The performance of the
compacted object-feature, extracted from multispectral image data, is plotted
in Fig.4.4 (using data set No.1) and Fig.4.5 (using data set No.2), and
compared with the performance of the original pixel-features from the same

scene.

The general form of the functional is defined by (see section 2.7):

Og (¥, X) = (1S,- X, ) @V, + BV,)"

In the second trial as Figure 4.5 shows two different functionals Fun.1 and
Fun.2 are defined for object-feature extraction. Where in the first functional

(Fun.1) the coefficient a and B are defined by
a=0and B=1 if n<5d

oa=1 and B=0 otherwise

and in the second functional (Fun.2) the coefficient o and P are defined by

dni d2
n'+d
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As Fig.4.4 and Fig.4.5 show the feature performance for window size more

than 3 lines is almost constant for a particular functional.

100
g5 4
1 o— -0
:\; 4
Y g0
o | S ECRLCEE IR LE LTI LR L L DL e bbb A
8 ]
= 1 —o— M.L. Object-feature
% 85-. ----- &---  M.L. Pixel-feature
g 4 —a— M.D. Object-feature
E —— A~ M.D. Pixelfeature
e
pae 1
w®
@ e
VI8 1 04— —]
75 -
L e — = A
70‘# T T T T LA M A SR B

2 5 8 11 14 17 20 23 26 29 32
Window size (divided by nx)

Fig. 4.4. Effect of window size on feature performance using data set No.1
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The compaction coefficient is dependent on the data type, where the metric
coefficient for feature extraction is adapted within the window. Thus it is
expected that, regardless of the data type and the functional space, the
compaction coefficient also be a function of the window size. Three different
data sets are used and the performance of the compaction coefficient as a
function of window size is plotted in Fig.4.6. Figure 4.6. shows the

compaction coefficient is almost constant for window height larger than three

lines.
29
26
23
5 20
(Y]
£ ]
§ L
c 17-
9
= .
«
% ]
14 -
3 “_
" 1 ——o— Functional.2 data set.1
——o— Functional.1 data set.1
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8 ——o—— Functional.1 data set.3
5 H—r—r—v —r——T—rr —r——r— T

{ v — v —r—T—
2 5 8 11 1 17 20 23 26 29 32
Window size (divided by nx)

Fig. 4.6. Effect of window size on the compaction coefficient using three
different data sets
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Classification accuracy is dependent on both the classification algorithm and
the training sample set. It is only slightly dependent on the window size, as
seen earlier. The objective of this section is to demonstrate the validity of the
path hypothesis for unsupervised object-feature extraction and to show that
performance of the object-features is better than the pixel-features,
independent of the choice of classifier decision rule. Once an object-feature
is classified the membership of pixels which belong to that object are

determined simultaneously, regardless the pixels' location in the scene.

Three different spaces (Diamond space, Euclidean space, and Chebyshev
space) are used separately for minimum distance functional construction to
illustrate the degree of metric dependence in the feature classification

performance relative to a maximum likelihood Gaussian decision rule.

The M.D. discriminant function in Diamond space represented by the

following equation:

I slk - Syk l

1 d
ai (Y) = Z {—'_ + gi In(Vik) +gy ln( Vyk )}

gl ¥ gyvvk

In the Euclidean space the M.D. discriminant function is defined by:

2 d sk yk 2
Z{g +gi|n(vik)+gy|n(vyk)}

k=1 | 'k + gy k

And in the Chebyshev space the discriminant function is represented by:
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lsuk S l

gvuk + gy yk

aT(Y SUp { +gi|n( Vik)+gy|n(vyk)}

The results of overall feature performance ( 100 - OME %) versus selected
classification decision rule in the metric spaces are plotted in figure 4.7 and

Fig.4.8.

Figure 4.9 shows the comparative results of feature classification
performance (FCP) maximum likelihood Gaussian decision rule, where, in
this test only the spectral features of objects are used for their classification.
Fig.4.10 shows FCP of data set No.1 using minimum distance decision rule in
Diamond space. Fig.4.11 shows FCP of data set No.1 using M.D. decision
rule in the Euclidean space. Fig.4.12 shows the feature classification
performance of data set No.1 using M.D. decision rule in the Chebyshev
space for classification, where the performance of the pixel-feature and the

object-features are presented separately.

The same experiment is done by using data set No.2 for classification of
object-features (compacted data) and pixel-features (original data), and the
comparison results are presented in the figures Fig.4.13, Fig.4.14, Fig.4.15
and Fig.4.16.
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The spectral feature for a given class is a function of sun angle, ground siope,
ground moisture, atmospheric absorption, MSS instrument noise, and many
other parameters. Therefore, the classification performance is dependent on
the training samples, even if they come from the same ground cover type. By
training the classifier using samples from the data set to be analyzed the
effects of many of these parameters are normalized out. Typically, a total
training set for a given class consists of several subsets of data, which are
selected from various locations throughout the image. However for obtaining
contextual features those pixels should be contiguous in the square area
(training field) with a size comparative to the data dimensionality (number of
spectral channels). Also, contextual information is highly dependent on the
sensor altitude and spatial resolution. So the need for training samples from

the same Flight-line is significant.

Two training sets are selected from different areas in different sizes. The
statistics of the training sets are presented in the appendix B. The
performance of pixel-features (original data) and object-feature is presented
in Table 4.3, using the first training set. In this experiment a standard
maximum likelihood Gaussian classifier is used for classification. Figure 4.17
shows the comparative feature classification performance (FCP) using the
first training set, where only the spectral features of objects are used for their
identification. The same experiment is done by using the second training set
for classification of the object-features (compacted data) and pixel-features

(original data), and the comparison results are presented by Fig.4.18.
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Since the classification process is performed in the feature-space rather than
in the observation-space, the algorithm is much faster than conventional
ones. This results from the fact that the size of feature-space is much smaller
than the size of pixel-feature-space. These examples' results show that data
redundancy is reduced by a significant amount (in this case, the size of the
feature-space for scene representation is reduced by a factor of 27). In
addition, the accuracy of informaiion extracted from the object-features (as
measured by classification accuracy) is slightly greater than that obtained
when using the original pixel-features. It is believed that the classification of
ground cover fields using the object-features based on the proposed
approach is more accurate and efficient than the point by point classification

in the original pixel-features.

4.3.2 Spatial-Feature-Map Appearance

Subjective appearance is an appropriate criterion when some objects in the
scene become more important than the others regardless of the size of
objects. In such cases it is often difficult to define a mathematical expression
for adequately quantifying feature quality. The visual assessment will be
used for this kind of qualification and for evaluation of the accuracy of the
compaction process in preserving the features of small objects or objects with
the complex boundaries. The obvious disadvantage of this criterion is that it
is subjective rather than quantitative. The subjective feature evaluation is

performed by visually comparing the map of compacted object-feature (called
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spatial-feature-map), with the spatial map of the original pixels (called

ground-truth-map).

As it pointed out, since the classification performance is dependent on the
training samples and the ground-truth-map, the spatial-feature-map
appearance is a valuable criterion for feature evaluation. Also, in the feature-
map there is a significant within-class information which can be used for even

ground-truth-map evaluation.

Spectral information of surrounding pixels is correlated with the center pixel
under consideration. In object detection the spectral features of adjacent
pixels are considered using neighboring information: thus the object-feature
which we represent them in this experiment only by (Si , Li ) built upon both
spectral and contextual information. Therefore, it is expected that the
classification accuracy to be higher by using object-feature rather than the
individual pixel-feature (notice that we did not consider effect of Vi in the
classification of object-feature using M.L. decision rule). Fig.4.19 shows by
using the object-feature, for example, the wheat field, which is circled,
classified better than when the pixel-features are used for its classification,

Fig.20.

A test for robustness of the path hypothesis and accuracy of the unity relation
shows that the functional based on path-hypothesis, can detect a single
randomly selected pixel in a relatively large soybean field which is replaced
by a pixel from some other ground cover types; this pixel is shown in a

triangle in Fig.4.19 and Fig.20.
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The appearance of an object in the spatial-feature-map can be intelligently
incorporated into the feature selection strategy for extraction of more complex
classes in the scene. Figure 4.3 shows the original data ground truth-map
data set No.1 and Fig.4.21 is the corresponding spatial-feature-map of data
set No.1 after object-feature extraction, which contained 1141 difterent
objects. Fig.4.21 shows that there is significant within-class variation, and
thus more information about the scene (e.g., soil type and vegetation
condition) might be extracted than will be attempted here, perhaps using

even more complex features.

It is often desirable to define boundaries sharply which separate a relatively
limited number of objects with different spectral features, but it is not
important to preserve the interclass scatter information within the boundaries.
The loss of interclass scatter information is roughly equivalent to contouring
within the scene and ignoring the contextual features. This kind of illustration
is a good tool for evaluation of image data which do not have a ground-truth-
map. To illustrate the validity of the unity relation and the path-hypothesis in
definition of correct boundaries and accuracy of the spatial-feature-map,

several images with the different complexity are used.

The campus-image with the size of 512 by 512 is shown in figure 4.22 which
is more complex than the later images. The results of compaction of the
campus-image by the factor of 41 is presented in the figure 4.23. Figure 4.24
is the original girl-image with the size of 256 by 256 pixels, and Figure 4.25
shows the spatial-feature-map of the same image after compaction by a

factor of 45. Figure 4.26 shows results of image compaction (spatial-feature-
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map) by the factor of 36 using the original shuttle-image with the size of 256

by 256 pixels which is illustrated in figure 4.27.

By comparison of the spatial-feature-maps of compacted images by their
corresponding original images, the accuracy of the object-feature-extraction

technique will be clear.
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Fig. 4.24 The original 256 x 256 girl-image
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Fig. 4.25 The spatial-feature-map of girl-image after compaction
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CHAPTER 5
SUMMARY AND CONCLUSION

In order to reduce data redundancy in multispectral imagery we have
proposed a model, based on a scene object-description, for multispectral
image representation. We have developed an on-line unsupervised object-
feature extraction algorithm (called AMICA) which detects the objects by
using the unity relation based on the path-hypothesis. The unity relation
among the pixels of an object can be defined with regard to the: adjacency
relation, spectral-feature and spatial-feature characteristics in an object.
AMICA uses the within object pixel-feature gradient vector as a valuable
contextual information to construct the object's features, which preserve the
class separability information within the data. Based on the path-hypothesis
the data read sequentially into the system and the unity relation between a
current pixel and the path-segments (objects in the observation space) are
examined, the current pixel may be merged into an appropriate object or it
will initiate a new object. An object is represented by a relevant object-

f

feature set.

%

AMICA is implemented to real multispectral image data. The performance of
the object-features is compared with the performance of the original pixel-

feature. The effect of metric spaces, classifier decision rules, training sets on
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the performance of the features are studied. Three different evaluation
strategies (overall misplacement error, feature classification performance and
subjective object appearance) are selected for comparative feature

evaluation using the pixel-features and the object-features.

The experimental results indicate that data volume is reduced by a significant
amount (the size of the feature-space for scene representation is reduced by
a factor between 20 to 50 which is data dependent). In addition, the accuracy
of information extracted from the object-features (as measured by
classification accuracy) is greater than that obtained when using the original
pixel-features. It is believed that the classification of ground cover fields in the
feature-space based on the proposed approach, is more accurate and

efficient than the point by point classification in the original space.

The correlation among the adjacent pixels in the image data appears in the
form of redundancy in the spectral-spatial features. Spectral information of
surrounding pixels is correlated with the center pixel under consideration. In
object detection the spectral features of adjacent pixels are considered using
neighboring information. Therefore, it is expected that the classification
accuracy to be higher by using object-feature rather than the individual pixel-
feature. The improvement of the classification performance is a consequence
of incorporation of the spatial information in the object-feature extraction
decision rule; however, in addition to that, it could be also a consequence of

complexity reduction by data compaction (Hughes' phenomenon).
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Since the classification process is performed in the feature-space rather than
in the observation-space, the algorithm is much faster than conventional

ones.

The object appearance in the feature-map can be incorporated (by visual
assessment) into the feature selection strategy for extraction of more complex

objects in the scene.

AMICA can be used as a boundary finding algorithm by using the spatial-
feature-map. It has been implemented to find boundaries in the pictures (e.g.,
figure of shuttle ) as well as for multispectral imagery. In this case the feature-
map can be used for further practical application such as detection and
recognition of objects to replace the human vision system, in the automatic

object recognition.

In summary, AMICA has been used advantageously on two probiems
concerning feature extraction and compression of multispectral remotely
sensed image data. It appears that the proposed object-feature extraction
process, for on-line redundancy reduction in the scene representation, has

several advantages over most of the conventional techniques.

+ The performance with the object-features can provide an

improvement in classification accuracy instead of any degradation.

+ The process-is substantially capable for tracking the complex

boundaries.
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The feature extraction process does not require any prior information
such as statistical properties of the scene, distribution, shape and size
of the object, or number and type of classes in the scene: the process
is in this sense completely unsupervised. There is only a very weak

dependence on the window size.

The process allows substantial flexibility for choosing features.
Depending on the desired information, different attributes can be
emphasized or de-emphasized by selection of an appropriate

functional in the measure-space.

The information extraction process does not need to be preceded by

a data de-compaction.

The compaction process is not iterative and may be implemented on
board the sensor platform. i.e. the proposed object-feature extraction
could be carried out before transmitting the image data to the
receiving terminal. In this case, a reduction of the transmission rate,
and, consequently, the required transmitting bandwidth is also
achieved. Of course, this solution requires an increase in the
processing capabilities at the satellite borne terminal, but the present
trend of VLSI dig“ital microelectronics and development in this
technology suggests this approach as a technically feasible solution
in the future. In this case, the unsupervised object-feature extraction
process can be illustrated in Fig. 5.1 as an interface between the data

acquisition system and the telecommunication system, which object-
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features, rather than pixel-features, are used for data transmission as

well as data archiving, distribution and information extraction.

Data Object-Feature
Acquisition Extraction

Data
Storage

Data
Storage

information Information
Extraction Consumption

Scene

Fig.5.1 A typical application of object-feature extraction
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Appendix A

Uncertainty

It is important to realize, regardless of the similarity measure selected, that
the measurements are not precise and there is always some uncertainty in
the observations. The effect of this uncertainty should be considered in the
selection of a system of mathematical models. There are several sources of
uncertainty, and since the type of uncertainty involved in our approach will
effect the choice of the system model, it is important to distinguish between

them. The main sources of uncertainty in systems are as follows:

Inaccurate measurements: Inexact measurements can cause uncertainty in
models of physical processes which are absolutely deterministic. For
example, measurement accuracy of a certain amount of
electromagnetic radiation energy by the sensor, regardless of the
quality of the sensor system, depends on the number of digitized gray-

levels.

Random occurrences: If the outcome of a physical process is believed to be
random, regardless of the measurement accuracy, there is another
type of uncertainty. There is an element of concern about the evolution
of the process which is unaffected by environmental imprecision. For
example, withdrawing only one seed from a box containing a mixture
of 50% wheat and 50% oat has two equally likely, mutually exclusive
outcomes (Oat or Wheat) per each trial. Thus the evolution of a
sequence of identical and independent trials of this experiment can
not be predicted with certainty. Models of processes which exhibit this

kind of uncertainty are called stochastic or probabilistic models. For a
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fair mixture of the oat and wheat, we have the a prior idea that the
probability of each outcome is equal to 0.5; however, this value will

change to zero or one after the trial was determined.

Vague descriptions: There is an element of uncertainty which is not caused
by measure error nor by random occurrence. Assume that all

members of a set P are deterministic and fixed. Let Xk be a

deterministic member of P. There is uncertainty in the determination of
the set of all members from P which are similar to X, because of
vagueness in the similarity criterion. Neither a deterministic model nor
a stochastic model is suitable for this physical situation, which
manifests a source of non-statistical uncertainty or fuzziness. In a
deterministic set every element has a precisely defined criterion of
membership equal to either zero or one. Inthe case of a fuzzy set the
class of objects need not necessarily either belong or not belong to
this class. Here each object may have intermediate grades of
membership, ranging from zero to one. It is important to realize that the
class membership is fixed and will not change even after the trial was

determined.
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Appendix B

Data Statistic

Test area Data set NO.1 containing:

Number of lines/frame =220
Number of pixels/line = 140
Number of channels =12

Data set NO.1 test area class statistic

Class type | Description | # of pixels |Percentage
C 1 Corn 10104 33%
IL S 2 |soybeans | 12910 42%
f 3 Woods 389 1.3%
W 4 Wheat 944 3.1%
ﬂ x 5 Sudex 1219 3.9%
0 6 QOats 603 2%
P 7 Pasture 339 1.1%
h 8 Hay 746 2.4%

9 M-Farm 3546 11.5% "
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Spectral imagery of test area data set NO.2 from channel-1 to channel-6
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Spectral imagery of test area data set NO.2 from channel-7 to channel-12
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Appendix C

Program for AMICA

P e T 2 2 2 e A R R e R R R S R R R A R A R AR R A A LA A A A A

* This progeram teststhe Unity Relation
* to extract object-features, for scene representation.
. nh number of chehels (dimensionality).

* ny number of lines in the scene
* nx number of pixels per scan line ’
' nwg higth of window= 2 x nw *
* gH Horizontal pixel-feature Gragien *
* gV Vertical pixel-feature Gragient *
* gHV Diagonal pixel-feature Gragient g
* inputs : .
* Data in BIL format: *
* outputs: .
* spatial-feature-map; ADRS = L, .
* object-features; Feature (X=S;) *
tﬁ"'itt.'.tttﬁiti.ﬁ.t.ti.'.t"i.ﬁtﬂintﬁtﬁitttttﬁiﬁ.tﬁﬁt.tt'-tt.
sumH=0
parameter(nhe12,nx=140,ny=220,nrp=24,nw=5) ;:"'1'\28 ihet.nh
oh) parameter(nwgs=2°nw,nxy=nwg*nx,nhmx=5°nh,nmax=50 sumH=sumHgH(ih}
integer sumVasumV+gV(ih)
1220 continue
wH(nh.nwg),v:rf:llg!::\wg),gH(nh),gV(nh),gHV(nh),sumH,sumV H{sumi L sumy) then .
X(nh),W(nh,nx,nw), ADRS(nx,nm),adk(nx,3),butk{nx) ﬂg‘}?:ﬂ ":1&1""
integer dmin(nx,3),D1S,dis1,dis2,dis3 disd,dis5 1230 gHV(ih)=gH(in)
Integer bufa(3'nx),a1,a2,a3,ad,as,armn,adlt.a, fdr,uopen 23 N continue
intager Y (nh,nx),V(nh,nx),S(nh,nx),N(nx) o158 p et o
character*1 scen(nx) 3\1/2:0 i ;1:
real X1{nh},tim(2) 1240 g (ﬂl y=gV(ih)
tdr=uopen(F210',384) 2 i continue
: {dreuopen(data/F LC 1 384) USROS
. :g::x:{g;}z&ggg; * Segmenatation of the Fir ¢
o {dr=uopen('data/FLC4’ 384) .
open(10,file=’FEATURE') SOfﬁSO ;‘;-1 i
opan(11 file="ADRS') 1300 ul r( )=
open(i2,file="FEATURT) ;0': inue
rrerersenensns OIS O=FEATURZ) vienne K5mik
. Initlation of the Functional Coefficients . :"(”"i“(h)"k
W ADRS(1,1)=k5
dm°11.°u2?1 etow adk(1,1)=K5
do 1100 ih=1,nh N(k)=1
wh(ih,iw)=0 do 1400 iha1,nh
wV(ih,iw)=0 3?:,’;2;.\([)V(Ih,1.1)
call uread(fdr,scen,nx k)=
( do 1110)ix-1,nx Y(ih k§)=W(ih.1.1)
W(ih,ix, w)=ichar(scen(ix}) 1400 continue
H#(W(ih,ix,w). 10} gg :gt‘)g ‘lf\-z:?a;
W(lh,m.uv)-W(lh,n(,vw)+256h(hix.1 o X(ih)-W(ih,lx:1)
. o . . PRI 1 continue
Wih,ix ) M(ix.e. 1) wHGn,iw)=wH(ih.w)siabs (W(n.fx.w)- dis1=DIS(ney. V(1 K5).S(1.K5).N(kS), X, gH.nh)
H(iw.ne. 1) WV(ih,iw) =WV (ih, W)+ labs(W(in, ix,iw)- if(dis1.le.nh) then
Wiih,ix,iw1}) ADRS(ix,1)=k5
1110 continue adk(Ix,1)=k5
wH(ib, iw+ nw)awH(ih, iw) f;(kS)-zg(;;‘SM N
wV/(ih, iws nw}awV(in,iw) 0 1520 ih=1,n )
1100 continue S(fh,kS)-S(‘lh,kS)fX(lh) ! !
1000 continue V(ih,k5)=V (ih k5)+iabs(Y (ih.k5)-X(ih))
do 1200 ih=1,nh ~ Y(ihk5)=X(ih)
wV(ih, 1)=wV(ih,2) 1520 continue
wV(ih,nwa 1)=wV(ih,nw) oise
gH(ih)=0 K5k
gV(ih}=0 iut:(l;)-ik
go 1210 iwg=1,nwg Ll _
gH(ihy=gH(ih)+wH(ih,iwg) ADRS(ix,1)=k5 .
gV(ih)=gV(ih)+wV(ih,iwg) adk(ix,1)=k5
1210 continue Nk5)=1
1200 continue do 1530 ihe1,nh

S(ihk5)=X{ih}
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V(ih kS)=0
¥ (ih,k 5= X(ih)

endif 21

.

b=t
ibf2=3

PR T T L LT Y T TP IT T T T AT T Ty

¢ Sagmentation of the Rest of Scene *

s

im?
tw=nw
wlanw-1
wg=nwg
nNp=ny-nw+ 1 131
t1=etime(tim)
t1atim(1}

do 2999 p=2,ny
i= 1+mod(i,nw)

.

it(ip.gt.nnp) goto 101 105

. Computing the Functional Coelficients *
twe1+mod(iw,nw)
w1e1smod{iwi,nw)
wg=1+mod(iwg.nwg)

do 2100 ih=1,nh 1061

call uread{!dr,scen,nx)
do 2110 Ix=1,nx
W(ih,ix,w)=ichar(scen(ix))

H(W(ih,Ix,iw).1.0}
W(ih,ix, iw) =W(ih,ix,w)+ 256
2110 continue
wH(ih,lwg)=0
wV/(ih,lwg)=0
do 2120 ix=2,nx
ixtmix-1
wH{(ih,iwg)=wH(ih iwg)+iabs(W(ih, ixiw)-
Wi(ih,tx 1,w)}
wV(ih,iwg)=wV(ih,iwg)+iabs (W(ih,ix,iw)-
Wiih.ix,mw1})
2120 continue
gH(ih)=0
gv(ihy=0 151
do 2130 itg=1,nwg
gH(ihy=gH(ih)+wH(ih,itg)
gV(ih)=gV(ih}+wV(ih,itg)
2130 continue
2100 continve
sumH=0
sumVa=0
do 2140 |h=1,nh
sumH=sumH+gH(ih)
sumV=sumV+gV(ih}
2140 continue
H{sumH.k.sumV) then .
do 2150 ihe1,nh
gHV(ihy=gH(ih) sosrsare
2150 continue 201
olse
do 2160 ih=1,nh
gHV(ih)=gV(ih)
2160 continue
endif 210
¢ Labeling th First Column of the Scene * .
0 Ixat
Ix2aix+ 1
do 110 ih=1,nh
X(ih)=W(ih,ix,i)
110 continue
* Case #2 *

sececssrtscsisincacasasacess

a2« ADRS(ix, iy1)
k2=adk(ix,ibf 1)
dis2aDIS(nxy,V(1,k2),5(1,k2),N{k2),X,gV,nh)
Hf{dis2.gt.nh) goto 103

ADRS({ix,iy)=a2

adk(ix,ibl)=k2

N(k2)=N(k2)+1

do 121 ih=1,nh

S(ih k2)=S(ih k2}+ X{ih)
V(ih,k2)=V(ih,k2)+ iabs (Y (ih.k2)- X(ih))
Y(ih,k2)=X(ih)
continue

olo 201

sasedasacnintranisassisasaias

Case #3 v

sesesusasresnreriecesatiinsne

iytlat 103

al«ADRS(in2,iy1)
k3=adk(x2,ibf 1)
if(x3.0q.k2) disd=dis2
if{k3.eq.k2) goto 105
dis3=DIS(nxy,V(1,k3),5(1,k3),N(k3),X,gHV,nh}
H{dis3.gt.nh) goto 105
ADRS(ix,iy)=a3
adk(ix,ibf)=k3
N(k3)=N{k3)+1
do 131 ihat,nh
8(ih,k3)=S(ih,k3)+ X(Ih)
V(ih k3)=V{th k3)+iabs (¥ (ihk3)- X (ih))

I I I T rrrvrrrey

Y

Y{ihk3)=X(ih)
continue
o 201
Case #5 *
H(la.gt.0)then
ab=buta(ia)
iasia-1
else
ama+!
aS=a
endit
H{butk(ik).eq.0)then
kSaik
bufk(ik)=ik
ik= 1+mod(ik,nx)
flagk=1
olse
Tk=t+mod(ik,nx)
flagk=0
endif
it{tlagk.eq.0) goto 1051
ADRS({ix,ly}=a5
adk(ix,bbf)ak5
N(k5)w1
do 151 ih=1,nh
S{ih.k5)=X{ih)
V(ih.k5)=0
Y(ih,k6)=X(ih)
continue
dig5=min0{dis2,dis3)
if(dis5.le.nhmx) then
if(dis2.eq.dis5) then
dmin(ix,bfje2
olsa
dmin{ix,bf)=3
endif
oise
dmin{ix,bf)=5
endi

sesaces .

Labelling non-Edge Pixels of the Scens

. s . son

do 200 ix=2,nx-1
Ixeix-1

Ix2eix+1

do 210 th=1,nh
X(in)=W(ih,ix,})
continue

Sesesasasecitatucariterocns

Case #1 .

D T T PPV PP IT

a1=ADRS(ix1,ly)
Kk 1wadk(ix1,ibf)
dis1=DIS(nxy,V(1,k1},S(1.k1},N(k 1),X,gH.nh)
a2«ADRS(ix,ly1)
k2m=adk(ix,ibf1)
i(k1.6q.k2) then
dis2=dis1
elsa
dis2=DIS(nxy,V(1.k2),5(1,k2),N(k2),X.gV,nh)
endf
disS=min0(dis 1,dis2)
it{dis5.gt.nh) goto 203
it{dis5.aq.dis 1) then

ADRS(ix,ly)=at

adk(ix,ibf)=k1

H{N(k1).gt.nmax) goto 32




211
32

2131

2132

214

150

N{k1)aN(k1)+1
do 211 ih=1,nh
S(ih.k1)=S(ih,k1)+X(ih}
V(ihk1)=V(ih,k1)+iabs(¥ (ih,k1)-X{ih})
¥ (ih K 1)mX{ih}
continue

a3=ADRS(ix2,iy1)

k3m=adk(ix2,ibft)

lf(k1.ne.k3) then

dis3=DIS(nxy, V(1.k3),S(1.k3),N(k3),X,gHV,nh}

H{died.le.nh) then

armnamin0(at,al)

ifarmn.eq.al} then
krmnekt
kdit=k3
adit=a3

eise
krmn=k3
kditek §
adit=al

endif
do 2131 Ix=1,nx
if{adk(Ix,ibf2).eq.kdlt) adk(tx,ibf2)=krmn
iffadk(lx,ibf1).eq.kdit) adk(lx ibf1)=krmn
continue
do 2132 Ix=1,Ix
lt{adk(lx,ibf).eq.kdht) adk(lx,ibf)=krmn
continue
do 213 ly=1,nmp
do 213 Ixet,nx
il{ADRS(ix,ly}.eq.adlt) ADRS(Ix ly)=armn
continue
Nkrmn}=N(krmn)+N(kdlt)
do 214 iha1,nh
S(ih.krmn)=S(ih krmn}+S(ih kdlt)
V(ih krmn)=V (ih krmn)+V{ih kdh)
Y (ihkrmn)=X(ih)
continue

Tkekadht

butk(ik)=0

lamia+ 1

bufa(ia)=adit

ondif

endif

sesersearssenioscnseiocttteie

.

Case #2 ¢

Sesteencrerctesertsseiiserie

221

olse
ADRS (ix iy)=a2
adk(ix,ibf)=k2
if{N(k2).h.nmax) then
N{k2)=N(k2)+1
do 221 ih=1,nh
S(ih,k2)=S{ih,k2)+X({ih)
V(ih.k2)=V(ih k2) +iabs(Y (ih,k2)-X(ih))
¥ (ih k2)=X{ih)
continue
endif

endif

oto 206

besssasssssssasasessssnsestae

.

Caso #3

Gesessasrsrebabartrrarereraie

203

231
33

a3=ADRS(ix2,iy1)
k3=adk(ix2,ibf1)
if(k3.0q.k2) dis3=dis2
i{k3.0q.k2) goto 204
H(k3.eq.k1) dis3=dis1
1t{k3.eq.k1} goto 204
dis3=DIS(nxy, V(1,k3),S(1,k3),N(k3),X,gHV,nh)
if{dis3.gt.nh) goto 204
ADRS(ix,iy)=a3
adk(ix,ibf)=k3
if(N(k3).gt.nmax) goto 33
N(k3)«N(k3)+1
do 231 iha1,nh
S(ih.k3)=S(ih,k3)+ X(ih)
V(ihk3)aV(ih,k3)+iabs(Y (ih,k3)-X(ih})
Y{ihk3)=X(ih)
continue
ad«=ADRS(Ix1,iy1)
kd=adk{ix1,ibf1}
if(k3.eq.k4) goto 206
dis4=DIS(nxy, V(1k4),5(1 k4),N(k4),X,gHV,nh)
if(dis4.gt.nh) goto 206
armn=minD{a3,ad)
if(armn.eq.a4) then
krmnekd
kdit=k3
adlit=a3

olse
krmn=k3
kdit=k4
adhtt=ad
endf
do 2331 Ix=1,nx
H{adk(ix,bf2).eq.kdR) adk(lx,bf2)=krmn
if(adk(ix,bf1}.eq.kdlt) adk(lx,bt1)=krmn
233 continue
do 2332 Ix=1,ix
it{adk(ix,ibf).eq.kah) adk(ix,bi}=krmn
2332 continue
do 233 ly=1,np
do 233 Ix=1,nx
{{ADRS(lx.ly).eq.adit) ADRS(Ix,ty)=marmn
233 continue
N(krmn)=N (krmn)+N{kdh)
do 234 |h=1,nh
S(ih krmn)=S(ih,krmn)+S(ih kdit)
V(ih krmn)=V(th krmn)+V(ih kdhty
Y (ih krmnj=X{ih)
234 continue
ka=kdit
bufk(ik)=0
jamia+1
bula(ia}=adit
goto 206
* Case #4 ‘
204 ad=ADRS(ix1 ly1)
k4madk(x 1,ibf1)
‘ if(k4.8q.k3) disdu=disd
if(k4.8q.k3) goto 205
if(k4.0q.k2) disd=dis2
if(k4.8q.k2) goto 205
if(k4.0q.k1) dis4udist
it(k4.6q.k1) goto 205
dis4=DIS(nxy,V(1,k4),5(1.k4),N(k4),X,gHV,nh}
if(dis4.gt.nh} goto 206
ADRS(ix,ly)=ad
adk{ix,ibfj=k4
f{N(k4).gt.nmax) goto 206
N(k4}=N (k4)+1
do 241 ihei,nh
S(ih,k4)=S(ihk4)+X(ih)
V(ih kd)=V(ih kd}+iabs(Y (ih k4)-X(ih))
Y(ih kd}=X(ih)
241 continue
goto 206
‘ Case #5 ¢
205 i(ia.gt.0} then
aS=buta(ia)
iamia-1
olse
awdt!
ab=a
endif
2051 it(butk(ik) .eq.0)then
kSmik
bufk(ik)m=ik
ik=1+mod(ik,nx)
flagk=1
olse
ik= 1+mod(ik,nx)
flagk=0
endt
it(flagk.eq.0) goto 2051
ADRS(ix,iy)=a5
adk(ix,ibf}=k5
N(k5)=1
do 251 tha1,nh
S{ih,k5)=X{ih)
V(ih k5)=0
Y(ih k5)=X{ih)
251 continue

dis5=min0(dis 1,dIs2,dis 3,dis4)
if(dis5.le.nhmx) then
#(dis1.eq.disS) then

dmin(ix, bf)=1
elself(dis2.eq.dis5) then

dmin(ix,bf)=2
elseif(dis3.eq.dis5) then

dmin(ix,bf)=3
eise

dmin(ix, bf}=4
endf
olse



dmin(ix,ibf)=5
endit

asesesisriresenetetatistsncse

¢ Case #6 *
206 H(ip.eq.2) goto 200

adit=ADRS(ix1,iy1)

kdhtaadk(x1,ibf1)

#(N(kdh).eq.1) then

ifiag=0

H{dmin{ix1,ibf1).eq.1) then

it{ix1-1.6q.0) print *,'ERROR 1',ix1,ip-1
armn«=ADRS(ix1-1,iy1)
krmn=adk(ix1-1,ibf1)

olsell(dmin{ix1,bbt1).8q.2) then
armn=ADRS(ix1,iy2}
krmnsadk(ix1,bt2)

elsalf(dmin(ix1,b11).6q.3) then
armn=ADRS(ix,iy2)
krmn=adk(ix,bf2)

oised(dmin(ix1,lbf1).eq.4) then

H(ix1-1.8q.0) print *, 'ERROR 4',ix1,ip-1
armn=ADRS(ix1-1,iy2)
krmnaadk(ix 1-1,ibf2)

elself(dmin{ix1,ibf1}.eq.5) then

iflag=1
olse
print *iy’,ip-1,'ix"ix t " dmin’ dmin{ix1,ibf1),'N', N(kdit)
endil
if{iflag.eq.0) then
if{N{krmn).eq.1} then
N{krmnj=2
do 261 ih=1,nh
S(ih,krmn)=2*S(ih krmn)
261 continue
endif
adk(ix1,ibf 1)=krmn
ADRS(ix1,ly}=armn
lk=kdkt
buftk(ik)=0
ia=ias+
bufa(iaj=adit
endit
endif
continue
* Labeling the last Column of Scene ¢
Ixmnx
ix1mix-1
do 310 ih=1,nh
X(ih)=W(ih,ix.i)
310 continue
* Case #1 ‘
a1=ADRS(ix1,ly)
k1=adk(ix 1,bf)

dis 1=DIS(nxy, V(1,k1),5(1,k1},N(k1),X,gH,nh)

It(dis 1.gt.nh) goto 302
ADRS(ix,iy)=at
adk(ix,ibf)=k 1
N{k1)=N(k1)+1
do 311 ihe1,nh
S(ih,k1}=S(ih.k1)+X(ih)
V(ihk1)=V(ih,k1)+fabe(Y{ih,k1)-X(ih))

Y(ihk1)=X(ih)
It continue
oto 306
Case #2 *
302 a2=ADRS(ix,iyt)

k2=adk{ix,ibf 1)
if(k2.0q.k1) dis2=dis1
if(k2.0q.k1) goto 304
dis2=DIiS(nuy,V(1.k2),5(1,k2),N{k2),X.gV,nh)
if(dis2.gt.nh) goto 304
ADRS(ix, iy)=a2
adk(ix,ibf)=k2
Nk2)=N{k2)+1
do 321 M=1,nh
S(ih,k2)=S({ih.k2)+X(ih)
V(ihk2)«V(ih,k2) +iabs (¥ (ih,k2)-X(ih))

Y(ih,k2)=X(ih)
321 continue
goto 306
* Case #4 *

ssssssessesuse sevesrsansencan

304 a4=ADRS(ix1,iy1)

kdagdk(ix1,lbf1)
Hi(k4.8q.k2) dis4=dis2
i(k4.0q.k2) goto 305
#{k4.0q.k1) disd=dis1
it{k4.0q.k1) goto 305
disd=DIS(nxy,V(1,k4),5(1.k4),N(k4),X,gHV,nh)
* H{dis4.gt.nh) goto 305
ADRS(ix,ly)=ad
adk(ix,ibf)=kd
N(kd)=N(k4)+1
do 341 |h=t,nh
S(ih,k4)=S(ih k4)+X(ih)
V(ih,kd)=V(ih ké)+iabs(Y (ih k4)-X(ih))

Y{ihk4)=X(ih)
341 continue
goto 306
* Case #5 *
305 H{la.g1.0y then
aSebufa(ia)
lasla-1
olse
a=a+1
aSea
endif
3051 itbutk(ik).eq.0then
kSmik
butk(k)eik
ke 1+mod(lk,nx)
flagke1
olse
ik=1+mod(ik,nx)
flagk=0
ondit
H(flagk.eq.0) goto 3051
ADRS(ix,ly}=a5
adk(ix,ibf)=k5
N{k5)=1
do 351 ih=1,nh
S(ih,kS)=X(ih)
V(ih,k5)=0
Y{ihkS)=X{ih)
351 continue

dis5=min0(dis1,dis2,dIs4)
if(dis5.le.nhmx) then
if(dis 1.eq.dis5) then

dmin(ix,bf}=1
elself{dis2.0q.dis5) then

dmin{ix,bf)=2
olse

dmin{ix,bf)=4
endit
olse

dmin(ix, bf)a5
endif

Sasssiseseesenetestttrtsesesns

* Case #6 *

306 il{ip.eq.2) goto 2000
do 360 i6=1,2
ix1=nx-(2-16)
adit=ADRS(ix1,ly 1)
kdk=adk{ix1,bf1)
H(N(kdh).eq.1) then
itlag=0

H(dmin(ix1,ibf1).eq.1) then
armn=ADRS(Ix1-1,iy 1)
krmn=adk(ix1-1,ib1)

elseil{dmin{ix1,ibl1).eq.2) then
armn=ADRS(ix1,iy2)
krmneadk(ix1,ibf2)

eiseif{dmin(ix1,ibf1).8q.3) then

if(ix1+1.gt.nx) print 'ERORR 3',ix1,Ip-1
armn=ADRS(ix1+1,iy2)
krmn=adk(ix1+ 1,ibt2)

elseit{dmin(ix1,ibf1).6q.4) then
armn=ADRS(ix1-1,iy2)
krmn=adk(ix 1-1,ibt2)

olsaif(dmin(ix1,ibf1).eq.5) then

Hflag=1
olse
print *'iy',ip-1,"ix",Ix1,'dmin' dmin(ix 1,io0 1), "N N(kdit)
endif
il{iflag.eq.0) then
if(N(krmn).eq.1) then
N(krmn)=2

do 361 ihe1,nh
S(ih krmn)=2*S(ih krmn)




152

continue
endif
adk(ix1,ibft)=krmn

361

Ik=kdit
bufk(ik)=0
ADAS(ix1,iy1)=armn
ia=la+1
bufa(ia)=adlt
endif
endif
continve

4sessesrassesteecsttttciarintienititncatecne

¢ Transmitting the Features

. sessssccase

=t

=0

ixmix+ 1

if(ADRS(Ix.ly2).eq. ADRS(ix,ly1}) then
Ixmlx+ 1
ix=1
H(Ix.gt.nx) ix=nx

401
410

endit
H(ix.}t.nx) goto 410
if(Ix.gt.nx) goto 2000
iflag=0
(ix.gt.1)then
do 420 Ix=1,Ix-1
H(ADRS(Ix,ly2).eq.ADRS(ix,iy2)) iflag=1
420 continue
endit
(iflag.eq.0) then
a5=ADRS (! iy2)
kS=adk(lx,ibf2)
k=5
bufk(ik)=0
do 430 ih=1,nh
X(ih)=nint(float(S(ih.k5))float(N(k5)))
430 continue
write(10,°) a5
write(10,") X
endif
Ixmix+ 1
goto 401
fy=1+mod(iy,nrp)
iy1=1+mod{ly1.nrp)
iy2=t+mod{iy2,nrp)
ibt=1+mod(ibf,3)
ibt 1= 1+mod(ibf1,3)
ibf2=1+mod(ibf2,3)
if(ip.ge.nm) then
fy3=1+mod(iy3.nrp)
do 450 ix=1,nx
ii=ADRS(ix,iy3)
1D «32+mod(ij,95)
scen(ix)=char(iD)
continue
write(11,) (ADRS(ix,ly3),ix=1,nx)
endif
2999 continue

esasasesasarasnsisssasesatesatisacacrete

2000

450

* Processing the last line  *
do 3100 ix=1,nx
adi=ADRS(ix.ly1)
kdlt=adk(ix,lbf1}

(N (kdit).eq.1) then
if

#(dmin(ix,ibf1).eq. 1) then

if{ix-1.8q.0) print *, 'ERROR 1',ix,ip-1
amn=ADRS({ix-1,iy1)
krmn=adk (ix-1,ibf1)

elseif(dmin(ix,ibl1).eq.2) then
armn=ADRS(ix,iy2)
krmnaadk(ix,bt2)

elseif{dmin{ix,ibf1).eq.3) then
armn=ADRS(ix+1.ly2)
krmna=adk{ix+1,ibt2)

elseif(dmin(ix,ibf1).eq.4) then

if(ix-1.eq.0) print *, 'ERROR 4',ix,ip-1
armn=ADRS(ix-1,iy2)
krmn=adk(ix-1,ibf2)

elseif(dmin{ix,ibf1).eq.5) then
iflag=1

olse

print *'ly',ip-1,'ix",ix, dmin’,dmin{ix,ibf 1),'N', N(kdlt)

endif

if(iftag.eq.0} then
if{N{krmn).eq.1) then
N(krmn)=2
do 3110 ih=1,nh

S(ih krmn)=2°S{ih,krmn)
3110 continue
endi
adk(ix,ibf1)=krmn
k=kdit
bufk{ik)=0
ADRS(ix,iy1)=armn
la=ia+1
bufa(la)=adit
endif
endil
3100 continue

P T

‘ Transmitting the Features
Ix=1
ix=0
Ixmbx+1
i{ADRS({Ix.ly2).eq.ADRS(Ix.ly 1)) then
iIxalx+1
x=1
if(tx.gt.nx) ix=nx

3001
3200

end#
if(ix.lt.nx) goto 3200
if{lx.gt.nx) goto 3002
iflag=0
if(ix.gt. 1)then
do 3210 ixe1,}x-1
If(ADAS(Ix,ly2).eq. ADRS(ix,ly2)) iflag=1
3210 continue
endit
if(iflag.eq.0) then
a5=-ADRS(Ix.iy2)
k5=adk(ix,ibt2)
do 3220 ih=1,nh
X(ih) =nint({tloat(S{ih,k5}}loat(N(k5)})
3220 continue
write(10,*} a5
write(10,°} X
endit
I tx4+1
goto 3001
k=1
bufk(ik)=ADRS(1,ly1)
K5=adk(1,ibf1)
do 3230 iha1,nh
X{ihy=nint{fioat(S(ih,k5)loat(N(k5)))

3002

3230 continue

write(10,") bufk{k)

write(10,") X

do 3300 ix=1,nx

iflage1
do 3310 a1,k
ittADRS{ix,iy1).eq.butk(lk)} Hlag=0
continue

if(flag.eq.1)then

ikmik+1

butk(ik)=ADR S(ix.iy1)

kS=adk{ix,ibt 1}

do 3330 ih=1,nh

X(ihy=nint{fioat(S(ih,k5} Mloat(N(k5}))

continue

write({10,*) bufk{k)

write(10,) X

endi

conlinue

do 500 iy=2,n1p

iy3=1+mod(iy3,nmp)
do 510 ix=1,nx
ij=ADRS{ix,ly3)
1D=32+mod(i},95)
scen{ixj=char(l0}
continue

write(11,*) {ADRS(ix,iy3),ix=1,nx)

continue

stop

end

Shuserecasasaitiretatebecscatatatatns

* Functional No.1 ¢

T T TR TR TT YT Y T Oe ey

3310

3330

3300

510

500

function DIS(nw,V,S,n,X,T,nh)
integer DIS,V{nh),S(nh),X(nh},T(nh).n,nh,nw
a=0.0
if(n.gt.100) then
do 20 l=1,nh
ama+abs{{S(N-(n*X(MH)Mloat(V(h))
20 continue
oise
do 10 l=1,nh
a=as+abs({{S()Moat(n))-fioat(X(1)))* (nwtoat{T(1})))

R S



10

continue
endif
DIS=nint{a)
retum

ond

cane

Functional No.2 *

function DIS2{nw,V,S.n.X,T,nh)
integer DIS,V(nh),S(nh),X(nh),T(nh),n,nh,nw
a=0.0

be1.0Moat(n+24)

ca24 Moat(nw'{n+24))

do 10 k=1,nh
a=a+abs(((S{i)Moat(n))-tioat XNV b V(1+c*T(h))
continue

DIS=nint{a)

retum

ond
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